-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
358 lines (299 loc) · 13.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import argparse
import os
import numpy as np
import pandas as pd
import torchvision
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
import torch.nn.functional as F
from train_generators import GeneratorResnet
import random
seed = 42
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
parser = argparse.ArgumentParser(description='Training EGS_TSSA for generating sparse adversarial examples')
parser.add_argument('--train_dir', default='../share_dataset/ILSVRC-2012/ILSVRC2012_img_train', help='path to imagenet training set')
parser.add_argument('--model_type', type=str, default='res50', help='Model against GAN is trained: incv3, res50')
parser.add_argument('--eps', type=int, default=10, help='Perturbation Budget')
parser.add_argument('--target', type=int, default=-1, help='-1 if untargeted')
parser.add_argument('--batch_size', type=int, default=8, help='Number of trainig samples/batch')
parser.add_argument('--epochs', type=int, default=20, help='Number of training epochs')
parser.add_argument('--lr', type=float, default=2.25e-5, help='Initial learning rate for adam')
parser.add_argument('--checkpoint', type=str, default='', help='path to checkpoint')
parser.add_argument('--tk', type=float, default=0.6, help='path to checkpoint')
# stage I
lam_1 = 0.00
lam_2 = 0.00001
## stage II
# lam_1 = 0.0001
# lam_2 = 0.0003
args = parser.parse_args()
eps = args.eps
print(args)
TK = True
if TK == True:
tk = args.tk
else:
choose = [0.,0.5]
epochs = args.epochs
# GPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
back_fea = torch.tensor([]).to(device)
back_grad = torch.tensor([]).to(device)
# Getting the gradient
def backward_hook(module, grad_in, grad_out):
global back_grad
back_grad = grad_out[0].clone().detach()
# Get feature layer
def forward_hook(module, input, output):
global back_fea
back_fea = output.detach()
# Model
if args.model_type == 'incv3':
model = torchvision.models.inception_v3(pretrained=True)
model.Mixed_7c.register_forward_hook(forward_hook)
model.Mixed_7c.register_full_backward_hook(backward_hook)
elif args.model_type == 'res50':
model = torchvision.models.resnet50(pretrained=True)
model.layer4[-1].register_forward_hook(forward_hook)
model.layer4[-1].register_full_backward_hook(backward_hook)
model = model.to(device)
model.eval()
# Input dimensions
if args.model_type in ['res50']:
scale_size = 256
img_size = 224
filterSize = 8
stride = 8
else:
scale_size = 300
img_size = 299
filterSize = 13
stride = 13
# x_box
P = np.floor((img_size - filterSize) / stride) + 1
P = P.astype(np.int32)
Q = P
index = np.ones([P * Q, filterSize * filterSize], dtype=int)
tmpidx = 0
for q in range(Q):
plus1 = q * stride * img_size
for p in range(P):
plus2 = p * stride
index_ = np.array([], dtype=int)
for i in range(filterSize):
plus = i * img_size + plus1 + plus2
index_ = np.append(index_, np.arange(plus, plus + filterSize, dtype=int))
index[tmpidx] = index_
tmpidx += 1
index = torch.LongTensor(np.tile(index, (args.batch_size, 1, 1))).to(device)
# Generator
if args.model_type == 'incv3':
netG = GeneratorResnet(inception=True, eps=eps / 255.)
else:
netG = GeneratorResnet(eps=eps / 255.)
if args.checkpoint != '':
netG.load_state_dict(torch.load(args.checkpoint,map_location='cuda:0'))
netG.to(device)
# Optimizer
optimG = optim.Adam(netG.parameters(), lr=args.lr, betas=(0.5, 0.999))
def trans_incep(x):
x = F.interpolate(x, size=(299,299), mode='bilinear', align_corners=False)
return x
# Data
data_transform = transforms.Compose([
transforms.Resize(scale_size, antialias=True),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
])
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
def normalize(t):
t[:, 0, :, :] = (t[:, 0, :, :] - mean[0]) / std[0]
t[:, 1, :, :] = (t[:, 1, :, :] - mean[1]) / std[1]
t[:, 2, :, :] = (t[:, 2, :, :] - mean[2]) / std[2]
return t
train_set = datasets.ImageFolder(args.train_dir, data_transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=4,
pin_memory=True)
train_size = len(train_set)
print('Training data size:', train_size)
# Adv Loss
def CWLoss(logits, target, kappa=-0., tar=False):
target = torch.ones(logits.size(0)).to(device).type(torch.cuda.FloatTensor).mul(target.float())
target_one_hot = Variable(torch.eye(1000).type(torch.cuda.FloatTensor)[target.long()].to(device))
real = torch.sum(target_one_hot * logits, 1)
other = torch.max((1 - target_one_hot) * logits - (target_one_hot * 10000), 1)[0]
kappa = torch.zeros_like(other).fill_(kappa)
if tar:
return torch.sum(torch.max(other - real, kappa))
else:
return torch.sum(torch.max(real - other, kappa))
criterion = CWLoss
# Get the most important area
def grad_topk(grad, index, filterSize, Tk):
k = int(((img_size / filterSize) ** 2) * Tk)
box_size = filterSize * filterSize
for i in range(len(grad)):
tmp = torch.take(grad[i], index[i])
norm_tmp = torch.norm(tmp, dim=-1)
g_topk = torch.topk(norm_tmp, k=k, dim=-1)
top = g_topk.values.max() + 1
norm_tmp_k = norm_tmp.put_(g_topk.indices, torch.FloatTensor([top] * k).to(device))
norm_tmp_k = torch.where(norm_tmp_k == top, 1., 0.)
tmp_bi = torch.as_tensor(norm_tmp_k.repeat_interleave(box_size)) * 1.0
grad[i] = grad[i].put_(index[i], tmp_bi)
return grad
# Get the zone area of interest
def grad_choose(grad, index, filterSize, choose):
box_size = filterSize * filterSize
for i in range(len(grad)):
tmp = torch.take(grad[i], index[i])
norm_tmp = torch.norm(tmp, dim=-1)
norm_UD = torch.argsort(norm_tmp,descending=True)
norm_len = len(norm_tmp)
choose_ch = [int(norm_len*choose[0]),int(norm_len*choose[1])]
choose_index = norm_UD[choose_ch[0]:choose_ch[1]]
norm_0 = torch.zeros_like(norm_tmp).detach().to(device)
norm_0[choose_index] = 1
norm_tmp_k = norm_0
tmp_bi = torch.as_tensor(norm_tmp_k.repeat_interleave(box_size)) * 1.0
grad[i] = grad[i].put_(index[i], tmp_bi)
return grad
# Training
print(
'Label: {} \t Model: {} \t Dataset: {} \t Saving instances: {}'.format(args.target, args.model_type,
args.train_dir, epochs))
if TK == True:
now = 'TK-{}_TG-{}_eps-{}_S-{}_Q-{}_K-{}-box-{}/'.format(args.model_type, args.target, eps, lam_1, lam_2, tk,
filterSize)
else:
now = 'CH-{}_TG-{}_eps-{}_S-{}_Q-{}_CH-{}_{}-box-{}/'.format(args.model_type, args.target, eps, lam_1, lam_2,
choose[0],choose[1], filterSize)
now_pic = now + 'pictures/'
if not os.path.exists(now):
os.mkdir(os.path.join(now))
os.mkdir(os.path.join(now_pic))
out_csv = pd.DataFrame([])
FR_white_box = []
tra_loss, norm_0, norm_1, norm_2, test = [], [], [], [], []
iterp = 2000 // args.batch_size
i_len = train_size // (iterp * args.batch_size)
out_csv['id'] = [i for i in range(i_len * (epochs+1))]
for epoch in range(epochs):
FR_wb, FR_wb_epoch = 0, 0
for i, (img, gt) in enumerate(train_loader):
img = img.to(device)
gt = gt.to(device)
if args.target == -1:
img_in = normalize(img.clone().detach())
out = model(img_in)
label = out.argmax(dim=-1).detach()
out_wb = label.clone().detach()
out.backward(torch.ones_like(out))
else:
out = torch.LongTensor(img.size(0))
out.fill_(args.target)
label = out.to(device)
out_tmp = model(normalize(img.clone().detach()))
out_tmp.backward(torch.ones_like(out_tmp))
out_wb = label.clone().detach()
netG.train()
optimG.zero_grad()
# Getting a structured mask
grad = back_grad.mean(dim=-1, keepdim=True).mean(dim=-2, keepdim=True)
grad_fea = (grad * back_fea).sum(dim=1)
resize = transforms.Resize((img_size, img_size), antialias=True)
G_F = resize(grad_fea).reshape(len(img), 1, img_size, img_size)
if TK == True:
grad_box = grad_topk(G_F, index, filterSize, tk)
else:
grad_box = grad_choose(G_F,index, filterSize, choose)
adv, adv_inf, adv_0, adv_00, grad_img = netG(img, grad_box)
adv_img = adv.clone().detach()
adv_test = adv.clone().detach()
adv_out = model(normalize(adv))
adv_out_to_wb = adv_out.clone().detach()
if args.target == -1:
FR_wb_tmp = torch.sum(adv_out_to_wb.argmax(dim=-1) != out_wb).item()
# Untargeted Attack
loss_adv = criterion(adv_out, label)
else:
FR_wb_tmp = torch.sum(adv_out_to_wb.argmax(dim=-1) == out_wb).item()
# Targeted Attack
loss_adv = criterion(adv_out, label, tar=True)
FR_wb += FR_wb_tmp
FR_wb_epoch += FR_wb_tmp
loss_spa = torch.norm(adv_0, 1)
bi_adv_00 = torch.where(adv_00 < 0.5, torch.zeros_like(adv_00), torch.ones_like(adv_00)*grad_box)
loss_qua = torch.sum((bi_adv_00 - adv_00) ** 2)
loss = loss_adv + lam_1 * loss_spa + lam_2 * loss_qua
loss.backward()
optimG.step()
adv_loss = loss_adv
spa1 = lam_1 * loss_spa
spa2 = lam_2 * loss_qua
if i % iterp == 0:
FR = FR_wb / (iterp * args.batch_size)
FR_wb = 0
adv_0_img = torch.where(adv_0 < 0.5, torch.zeros_like(adv_0), torch.ones_like(adv_0)).clone().detach()
l0 = (torch.norm(adv_0_img.clone().detach(), 0) / args.batch_size).item()
l1 = (torch.norm(adv_0_img.clone().detach() * adv_inf.clone().detach(), 1) / args.batch_size).item()
l2 = (torch.norm(adv_0_img.clone().detach() * adv_inf.clone().detach(), 2) / args.batch_size).item()
linf = (torch.norm(adv_0_img.clone().detach() * adv_inf.clone().detach(), p=np.inf)).item()
tra_loss.append(loss.item())
FR_white_box.append(FR)
norm_0.append(l0)
norm_1.append(l1)
norm_2.append(l2)
print('\n', '#' * 20)
print('l0:', l0, 'l1:', l1, 'l2:', l2, 'linf:', linf, '\n',
'loss: %.4f'%loss.item(),'adv: %.4f'%adv_loss.item(),'spa1: %.4f'%spa1.item(),'spa2:%.4f'%spa2.item(), '\n',
args.model_type, ':', FR)
if epochs < 21:
try:
out_csv['tra_loss'] = pd.Series(tra_loss)
out_csv['norm_0'] = pd.Series(norm_0)
out_csv['norm_1'] = pd.Series(norm_1)
out_csv['norm_2'] = pd.Series(norm_2)
out_csv[args.model_type] = pd.Series(FR_white_box)
loss_csv = now + "model-{}_eps-{}_lr-{}_S-{}_Q-{}.csv".format(args.model_type, eps, args.lr, lam_1, lam_2)
out_csv.to_csv(loss_csv)
except:
pass
if i in [200, 1000, 10000, 20000]:
vutils.save_image(vutils.make_grid(adv_img, normalize=True, scale_each=True),
now_pic + 'ep{}_adv{}.png'.format(epoch, i))
vutils.save_image(vutils.make_grid(grad_img, normalize=True, scale_each=True),
now_pic + 'ep{}_grad_img{}.png'.format(epoch, i))
vutils.save_image(vutils.make_grid(adv_img - img, normalize=True, scale_each=True),
now_pic + 'ep{}_noise{}.png'.format(epoch, i))
vutils.save_image(vutils.make_grid(img, normalize=True, scale_each=True),
now_pic + 'ep{}_org{}.png'.format(epoch, i))
FR_wb_ep_mean = FR_wb_epoch / train_size
print('running:{} | FR-{}:{}\n'.format(epoch, args.model_type, FR_wb_ep_mean))
start, end = int(epoch) * i_len, int(epoch + 1) * i_len
N0 = np.mean(norm_0[start:end])
N1 = np.mean(norm_1[start:end])
try:
print('loss:{}--L0:{}--L1:{}--L2:{}\n'.format(tra_loss[-1], N0, N1, np.mean(norm_2[start:end])))
except:
pass
save_path = now + 'GN_{}_{}_{}.pth'.format(args.target, args.model_type, epoch)
torch.save(netG.state_dict(), os.path.join(save_path))
out_csv['tra_loss'] = pd.Series(tra_loss)
out_csv['norm_0'] = pd.Series(norm_0)
out_csv['norm_1'] = pd.Series(norm_1)
out_csv['norm_2'] = pd.Series(norm_2)
out_csv[args.model_type] = pd.Series(FR_white_box)
loss_csv = now + "model-{}_eps-{}_lr-{}_S-{}_Q-{}.csv".format(args.model_type, eps, args.lr, lam_1, lam_2)
out_csv.to_csv(loss_csv)
print("Training completed...")