-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
264 lines (217 loc) · 10.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import argparse
import os
import numpy as np
import torchvision
import torch
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torchvision.utils as vutils
import torch.nn.functional as F
from test_generators import GeneratorResnet
parser = argparse.ArgumentParser(description='testing EGS_TSSA for generating sparse adversarial examples')
parser.add_argument('--test_dir', default='Dataset/val_data/', help='path to imagenet testing set')
parser.add_argument('--model_type', type=str, default='res50', help='Model against GAN is tested: incv3, res50')
parser.add_argument('--model_t', type=str, default='vgg16', help='Model')
parser.add_argument('--eps', type=int, default=10, help='Perturbation Budget')
parser.add_argument('--target', type=int, default=-1, help='-1 if untargeted')
parser.add_argument('--batch_size', type=int, default=1, help='Number of testig samples/batch')
parser.add_argument('--checkpoint', type=str, default='weights/soft_eps255_res50_tk0.873.pth', help='path to checkpoint')
parser.add_argument('--tk', type=float, default=0.873, help='path to checkpoint')
if __name__ == '__main__':
args = parser.parse_known_args()[0]
eps = args.eps
print(args)
tk = args.tk
choose = [0., 0.6]
print('eps:', eps)
# GPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
back_fea = torch.tensor([]).to(device)
back_grad = torch.tensor([]).to(device)
# Getting the gradient
def backward_hook(module, grad_in, grad_out):
global back_grad
back_grad = grad_out[0].clone().detach()
# Get feature layer
def forward_hook(module, input, output):
global back_fea
back_fea = output.detach()
# Model
if args.model_type == 'incv3':
model = torchvision.models.inception_v3(pretrained=True)
model.Mixed_7c.register_forward_hook(forward_hook)
model.Mixed_7c.register_full_backward_hook(backward_hook)
elif args.model_type == 'res50':
model = torchvision.models.resnet50(pretrained=True)
model.layer4[-1].register_forward_hook(forward_hook)
model.layer4[-1].register_full_backward_hook(backward_hook)
if args.model_t == 'dense161':
model_t = torchvision.models.densenet161(pretrained=True)
elif args.model_t == 'vgg16':
model_t = torchvision.models.vgg16(pretrained=True)
elif args.model_t == 'incv3':
model_t = torchvision.models.inception_v3(pretrained=True)
elif args.model_t == 'res50':
model_t = torchvision.models.resnet50(pretrained=True)
model_t = model_t.to(device)
model_t.eval()
model = model.to(device)
model.eval()
# Input dimensions
if args.model_type in ['res50']:
scale_size = 256
img_size = 224
filterSize = 8
stride = 8
else:
scale_size = 300
img_size = 299
filterSize = 13
stride = 13
# x_box
P = np.floor((img_size - filterSize) / stride) + 1
P = P.astype(np.int32)
Q = P
index = np.ones([P * Q, filterSize * filterSize], dtype=int)
tmpidx = 0
for q in range(Q):
plus1 = q * stride * img_size
for p in range(P):
plus2 = p * stride
index_ = np.array([], dtype=int)
for i in range(filterSize):
plus = i * img_size + plus1 + plus2
index_ = np.append(index_, np.arange(plus, plus + filterSize, dtype=int))
index[tmpidx] = index_
tmpidx += 1
index = torch.LongTensor(np.tile(index, (args.batch_size, 1, 1))).to(device)
# Generator
if args.model_type == 'incv3':
netG = GeneratorResnet(inception=True, eps=eps / 255.)
else:
netG = GeneratorResnet(eps=eps / 255.)
netG.load_state_dict(torch.load(args.checkpoint, map_location='cuda:0'))
netG.to(device)
netG.eval()
# Data
data_transform = transforms.Compose([
transforms.Resize(scale_size, antialias=True),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
])
def trans_incep(x):
x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=False)
return x
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
def normalize(t):
t[:, 0, :, :] = (t[:, 0, :, :] - mean[0]) / std[0]
t[:, 1, :, :] = (t[:, 1, :, :] - mean[1]) / std[1]
t[:, 2, :, :] = (t[:, 2, :, :] - mean[2]) / std[2]
return t
test_set = datasets.ImageFolder(args.test_dir, data_transform)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=2,
pin_memory=True)
test_size = len(test_set)
print('test data size:', test_size)
# Get the most important area
def grad_topk(grad, index, filterSize, Tk=tk):
k = int(((img_size / filterSize) ** 2) * Tk)
box_size = filterSize * filterSize
for i in range(len(grad)):
tmp = torch.take(grad[i], index[i])
norm_tmp = torch.norm(tmp, dim=-1)
g_topk = torch.topk(norm_tmp, k=k, dim=-1)
top = g_topk.values.max() + 1
norm_tmp_k = norm_tmp.put_(g_topk.indices, torch.FloatTensor([top] * k).to(device))
norm_tmp_k = torch.where(norm_tmp_k == top, 1., 0.)
tmp_bi = torch.as_tensor(norm_tmp_k.repeat_interleave(box_size)) * 1.0
grad[i] = grad[i].put_(index[i], tmp_bi)
return grad
# Get the zone area of interest
def grad_choose(grad, index, filterSize, choose):
box_size = filterSize * filterSize
for i in range(len(grad)):
tmp = torch.take(grad[i], index[i])
norm_tmp = torch.norm(tmp, dim=-1)
norm_UD = torch.argsort(norm_tmp, descending=True)
norm_len = len(norm_tmp)
choose_ch = [int(norm_len * choose[0]), int(norm_len * choose[1])]
choose_index = norm_UD[choose_ch[0]:choose_ch[1]]
norm_0 = torch.zeros_like(norm_tmp).detach().to(device)
norm_0[choose_index] = 1
norm_tmp_k = norm_0
tmp_bi = torch.as_tensor(norm_tmp_k.repeat_interleave(box_size)) * 1.0
grad[i] = grad[i].put_(index[i], tmp_bi)
return grad
now = '{}TO{}_eps-{}-K-{}/'.format(args.model_type, args.model_t, eps, tk)
now_pic = now + 'pictures/'
if not os.path.exists(now):
os.mkdir(os.path.join(now))
os.mkdir(os.path.join(now_pic))
l0, l1, l2, linf = 0, 0, 0, 0
FR_bb_epoch, FR_wb_epoch = 0, 0
for i, (img, gt) in enumerate(test_loader):
img = img.to(device)
gt = gt.to(device)
if 'inc' in args.model_type or 'xcep' in args.model_type:
out = model(normalize(trans_incep(img.clone().detach())))
else:
out = model(normalize(img.clone().detach()))
label = out.argmax(dim=-1).clone().detach()
out_wb = label.clone().detach()
out.backward(torch.ones_like(out))
if 'inc' in args.model_t or 'xcep' in args.model_t:
out_bb = model_t(normalize(trans_incep(img.clone().detach())))
else:
out_bb = model_t(normalize(img.clone().detach()))
# Getting a structured mask
grad = back_grad.mean(dim=-1, keepdim=True).mean(dim=-2, keepdim=True)
grad_fea = (grad * back_fea).sum(dim=1)
resize = transforms.Resize((img_size, img_size), antialias=True)
G_F = resize(grad_fea).reshape(len(img), 1, img_size, img_size)
# grad_box = grad_choose(G_F, index, filterSize, choose)
grad_box = grad_topk(G_F, index, filterSize, tk)
adv, adv_inf, adv_0, adv_00, grad_img = netG(img, grad_box)
adv_img = adv.clone().detach()
adv_test = adv.clone().detach()
if 'inc' in args.model_type or 'xcep' in args.model_type:
adv_out = model(normalize(trans_incep(adv.clone().detach())))
else:
adv_out = model(normalize(adv.clone().detach()))
adv_out_to_wb = adv_out.clone().detach()
if 'inc' in args.model_t or 'xcep' in args.model_t:
adv_out_to_bb = model_t(normalize(trans_incep(adv_test.clone().detach())))
else:
adv_out_to_bb = model_t(normalize(adv_test.clone().detach()))
if args.target == -1:
FR_wb_tmp = torch.sum(adv_out_to_wb.argmax(dim=-1) != out_wb).item()
FR_bb_tmp = torch.sum(adv_out_to_bb.argmax(dim=-1) != out_bb.argmax(dim=-1)).item()
else:
FR_wb_tmp = torch.sum(adv_out_to_wb.argmax(dim=-1) == out_wb).item()
FR_bb_tmp = torch.sum(adv_out_to_bb.argmax(dim=-1) == out_bb.argmax(dim=-1)).item()
FR_wb_epoch += FR_wb_tmp
FR_bb_epoch += FR_bb_tmp
l0 += torch.norm(adv_0.clone().detach(), 0).item()
l1 += torch.norm(adv_0.clone().detach() * adv_inf.clone().detach(), 1).item()
l2 += torch.norm(adv_0.clone().detach() * adv_inf.clone().detach(), 2).item()
linf = (torch.norm(adv_0.clone().detach() * adv_inf.clone().detach(), p=np.inf)).item()
if i in [201, 1001, 2001, 3001, 4001]:
vutils.save_image(vutils.make_grid(adv_img, normalize=True, scale_each=True),
now_pic + 'adv{}.png'.format(i))
vutils.save_image(vutils.make_grid(grad_img, normalize=True, scale_each=True),
now_pic + 'grad_img{}.png'.format(i))
vutils.save_image(vutils.make_grid(adv_img - img, normalize=True, scale_each=True),
now_pic + 'noise{}.png'.format(i))
vutils.save_image(vutils.make_grid(img, normalize=True, scale_each=True),
now_pic + 'org{}.png'.format(i))
FR_wb_ep_mean = FR_wb_epoch / test_size
FR_bb_ep_mean = FR_bb_epoch / test_size
print('FR-{}:{} | FR-{}:{}\n'.format(args.model_type, FR_wb_ep_mean, args.model_t,
FR_bb_ep_mean))
try:
print('L0:{}--L1:{:.4f}--L2:{:.4f}--Linf:{:.4f}\n'.format(int(l0 / test_size), l1 / test_size, l2 / test_size,
linf))
except:
pass