DC Motor 25 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : Nenad Filipovic
- Date : Mar 2023.
- Type : I2C type
This example demonstrates the use of DC Motor 25 Click board™ by driving the DC motor in both directions every 3 seconds.
- MikroSDK.Board
- MikroSDK.Log
- Click.DCMotor25
dcmotor25_cfg_setup
Config Object Initialization function.
void dcmotor25_cfg_setup ( dcmotor25_cfg_t *cfg );
dcmotor25_init
Initialization function.
err_t dcmotor25_init ( dcmotor25_t *ctx, dcmotor25_cfg_t *cfg );
dcmotor25_default_cfg
Click Default Configuration function.
err_t dcmotor25_default_cfg ( dcmotor25_t *ctx );
dcmotor25_forward
DC Motor 25 set forward mode function.
void dcmotor25_forward ( dcmotor25_t *ctx );
dcmotor25_reverse
DC Motor 25 set reverse mode function.
void dcmotor25_reverse ( dcmotor25_t *ctx );
dcmotor25_brake
DC Motor 25 set brake mode function.
void dcmotor25_brake ( dcmotor25_t *ctx );
Initializes the I2C drivernd and performs the Click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
dcmotor25_cfg_t dcmotor25_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
dcmotor25_cfg_setup( &dcmotor25_cfg );
DCMOTOR25_MAP_MIKROBUS( dcmotor25_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == dcmotor25_init( &dcmotor25, &dcmotor25_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( DCMOTOR25_ERROR == dcmotor25_default_cfg ( &dcmotor25 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
Delay_ms ( 100 );
}
This example demonstrates the use of the DC Motor 25 Click board™. Drives the motors in the forward and reverse direction with a 3 seconds delay with engine braking between direction changes. Results are being sent to the UART Terminal, where you can track their changes.
void application_task ( void )
{
log_printf ( &logger, " Forward\r\n" );
dcmotor25_forward( &dcmotor25 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf ( &logger, " Brake\r\n" );
dcmotor25_brake( &dcmotor25 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf ( &logger, " Reverse\r\n" );
dcmotor25_reverse( &dcmotor25 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf ( &logger, " Brake\r\n" );
dcmotor25_brake( &dcmotor25 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.