-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtest.py
executable file
·477 lines (353 loc) · 22.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
# Basic imports
import os
import time
import sys
import argparse
import tensorflow as tf
import numpy as np
import multiprocessing as mp
# Tensorflow ops imports
from tensorflow.python.ops import clip_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.ops import variables as vars_
from tensorflow.python.training import queue_runner_impl
# Custom imports
from models import *
from utils import initialize_from_dict, save_checkpoint, load_checkpoint, make_dir, Metrics
from Queue import Queue
from utils.logger import Logger
from random import shuffle
from utils.load_dataset_tfrecords import load_dataset
from utils.argument_utils import read_json, assign_args
parser = argparse.ArgumentParser()
# Argument loading
parser.add_argument('--argsFile', action= 'store', type=str, default='none',
help= 'The name of the file that contains a model\'s arguments. Also requires --model.')
parser.add_argument('--model', action= 'store', required=True,
help= 'Model architecture (c3d, tsn, i3d, resnet)')
args_init = parser.parse_known_args()[0]
model_name = args_init.model
args_file = args_init.argsFile
args_json = read_json(model_name, args_file)
json_keys = args_json.keys()
# Model parameters
parser.add_argument('--inputDims', action='store', required='inputDims' not in json_keys, type=int,
help = 'Input Dimensions (Number of frames to pass as input to the model)')
parser.add_argument('--outputDims', action='store', required='outputDims' not in json_keys, type=int,
help = 'Output Dimensions (Number of classes in dataset)')
parser.add_argument('--seqLength', action='store', required='seqLength' not in json_keys, type=int,
help = 'Number of output frames expected from model')
parser.add_argument('--modelAlpha', action='store', type=float, default=1.,
help = 'Resampling factor for constant value resampling and alpha initialization')
parser.add_argument('--inputAlpha', action='store', type=float, default=1.,
help = 'Resampling factor for constant value resampling of input video, used mainly for testing models.')
parser.add_argument('--dropoutRate', action='store', type=float, default=0.5,
help = 'Value indicating proability of keeping inputs of the model\'s dropout layers.')
parser.add_argument('--freeze', action='store', type=int, default=0,
help = 'Freeze weights during training of any layers within the model that have the option set. (default False)')
parser.add_argument('--returnLayer', nargs='+',type=str, default=['logits'],
help = 'Which model layers to be returned by the models\' inference during testing.')
parser.add_argument('--loadWeights', action='store', type=str, default='default',
help = 'String which can be used to specify the default weights to load.')
# Experiment parameters
parser.add_argument('--dataset', action= 'store', required='dataset' not in json_keys,
help= 'Dataset (UCF101, HMDB51)')
parser.add_argument('--loadedDataset', action= 'store', required='loadedDataset' not in json_keys,
help= 'Dataset (UCF101, HMDB51)')
parser.add_argument('--loadedPreproc', action= 'store', type=str, default='null',
help= 'The preprocessing of the weights to be loaded.')
parser.add_argument('--numGpus', action= 'store', type=int, default=1,
help = 'Number of Gpus used for calculation')
parser.add_argument('--gpuList', nargs='+',type=str, default=[],
help = 'List of GPU IDs to be used')
parser.add_argument('--train', action= 'store', type=int, default=0,
help = 'Binary value to indicate training or evaluation instance')
parser.add_argument('--load', action='store', type=int, default=1,
help = 'Whether to use the current trained checkpoints with the same experiment_name or to test from default weights.')
parser.add_argument('--loadedCheckpoint', action='store', type=int, default=-1,
help = 'Specify the step of the saved model checkpoint that will be loaded for testing. Defaults to most recent checkpoint.')
parser.add_argument('--size', action='store', required='size' not in json_keys, type=int,
help = 'Input frame size')
parser.add_argument('--expName', action='store', required='expName' not in json_keys,
help = 'Unique name of experiment being run')
parser.add_argument('--numVids', action='store', required='numVids' not in json_keys, type=int,
help = 'Number of videos to be used for testing')
parser.add_argument('--split', action='store', type=int, default=1,
help = 'Dataset split to use')
parser.add_argument('--baseDataPath', action='store', default='/z/dat',
help = 'Path to datasets')
parser.add_argument('--fName', action='store', required='fName' not in json_keys,
help = 'Which dataset list to use (trainlist, testlist, vallist)')
parser.add_argument('--clipLength', action='store', type=int, default=-1,
help = 'Length of clips to cut video into, -1 indicates using the entire video as one clip')
parser.add_argument('--videoOffset', action='store', default='none',
help = '(none or random) indicating where to begin selecting video clips assuming clipOffset is none')
parser.add_argument('--clipOffset', action='store', default='none',
help = '(none or random) indicating if clips are selected sequentially or randomly')
parser.add_argument('--clipStride', action='store', type=int, default=0,
help = 'Number of frames that overlap between clips, 0 indicates no overlap and negative values indicate a gap of frames between clips')
parser.add_argument('--numClips', action='store', type=int, default=-1,
help = 'Number of clips to break video into, -1 indicates breaking the video into the maximum number of clips based on clipLength, clipStride, and clipOffset')
parser.add_argument('--batchSize', action='store', type=int, default=1,
help = 'Number of clips to load into the model each step.')
parser.add_argument('--metricsDir', action='store', type=str, default='default',
help = 'Name of sub directory within experiment to store metrics. Unique directory names allow for parallel testing.')
parser.add_argument('--metricsMethod', action='store', default='avg_pooling',
help = 'Which method to use to calculate accuracy metrics. (avg_pooling, last_frame, svm, svm_train or extract_features)')
parser.add_argument('--preprocMethod', action='store', default='default',
help = 'Which preprocessing method to use (default, cvr, rr, sr are options for existing models)')
parser.add_argument('--randomInit', action='store', type=int, default=0,
help = 'Randomly initialize model weights, not loading from any files (Default 0)')
parser.add_argument('--avgClips', action='store', type=int, default=0,
help = 'Boolean indicating whether to average predictions across clips (Default 0)')
parser.add_argument('--useSoftmax', action='store', type=int, default=1,
help = 'Boolean indicating whether to apply softmax to the inference of the model (Default 1)')
parser.add_argument('--preprocDebugging', action='store', type=int, default=0,
help = 'Boolean indicating whether to load videos and clips in a queue or to load them directly for debugging (Default 0)')
parser.add_argument('--verbose', action='store', type=int, default=1,
help = 'Boolean switch to display all print statements or not')
parser.add_argument('--topk', action='store', type=int, default=3,
help = 'Integer indication top k predictions made (Default 3)')
parser.add_argument('--save', action='store', type=int, default=1,
help = 'Boolean indicating whether to save any metrics, logs, or results. Used for testing if the code runs.')
parser.add_argument('--reverse', action='store', type=int, default=0,
help = 'Boolean indicating whether reverse videos and classify them as a new action class. 0 all videos are forward, 1 randomly reversed videos, 2 all videos are reversed')
args = parser.parse_args()
args = assign_args(args, args_json, sys.argv)
if args.verbose:
print "Setup of current experiments"
print "\n############################"
print args
print "############################ \n"
# END IF
loaded_preproc = args.loadedPreproc
if loaded_preproc=='null':
loaded_preproc = args.preprocMethod
model_name = args.model
save_bool = args.save
model = models_import.create_model_object(modelName = model_name,
inputAlpha = args.inputAlpha,
modelAlpha = args.modelAlpha,
clipLength = args.clipLength,
numVids = args.numVids,
numEpochs = 1,
batchSize = args.batchSize,
numClips = args.numClips,
numGpus = 1,
train = args.train,
expName = args.expName,
outputDims = args.outputDims,
inputDims = args.inputDims,
preprocMethod = args.preprocMethod,
dropoutRate = args.dropoutRate,
freeze = args.freeze,
loadWeights = args.loadWeights,
verbose = args.verbose)
def test(model, input_dims, output_dims, seq_length, size, dataset, loaded_dataset, experiment_name, num_vids, split, base_data_path, f_name, load_model, return_layer, clip_length, video_offset, clip_offset, num_clips, clip_stride, metrics_method, batch_size, metrics_dir, loaded_checkpoint, verbose, gpu_list, preproc_method, loaded_preproc, random_init, avg_clips, use_softmax, preproc_debugging, reverse, topk):
"""
Function used to test the performance and analyse a chosen model
Args:
:model: tf-activity-recognition framework model object
:input_dims: Number of frames used in input
:output_dims: Integer number of classes in current dataset
:seq_length: Length of output sequence expected from LSTM
:size: List detailing height and width of frame
:dataset: Name of dataset being loaded
:loaded_dataset: Name of dataset which was used to train the current model
:experiment_name: Name of current experiment
:num_vids: Number of videos to be used for testing
:split: Split of dataset being used
:base_data_path: Full path to root directory containing datasets
:f_name: Specific video directory within a chosen split of a dataset
:load_model: Boolean variable indicating whether to load from a checkpoint or not
:return_layer: Layer to return from the model, used to extract features
:clip_length: Length of clips to cut video into, -1 indicates using the entire video as one clip')
:video_offset: String indicating where to begin selecting video clips (provided clipOffset is None)
:clip_offset: "none" or "random" indicating where to begin selecting video clips
:num_clips: Number of clips to break video into
:clip_stride: Number of frames that overlap between clips, 0 indicates no overlap and negative values indicate a gap of frames between clips
:metrics_method: Which method to use to calculate accuracy metrics. ("default" or "svm")
:batch_size: Number of clips to load into the model each step.
:metrics_dir: Name of subdirectory within the experiment to store metrics. Unique directory names allow for parallel testing
:loaded_checkpoint: Specify the exact checkpoint of saved model to be loaded for further training/testing
:verbose: Boolean to indicate if all print statement should be procesed or not
:gpu_list: List of GPU IDs to be used
:preproc_method: The preprocessing method to use, default, cvr, rr, sr, or any other custom preprocessing
:loaded_preproc: Name of preproc method which was used to train the current model
:random_init: Randomly initialize model weights, not loading from any files (deafult False)
:avg_clips: Binary boolean indicating whether to average predictions across clips
:use_softmax: Binary boolean indicating whether to apply softmax to the inference of the model
:preproc_debugging: Boolean indicating whether to load videos and clips in a queue or to load them directly for debugging (Default 0)
Returns:
Does not return anything
"""
with tf.name_scope("my_scope") as scope:
# Initializers for checkpoint and global step variable
ckpt = None
gs_init = 0
################################### Checkpoint loading block #######################################################
# Load pre-trained/saved model
if load_model:
try:
ckpt, gs_init, learning_rate_init = load_checkpoint(model.name, loaded_dataset, experiment_name, loaded_checkpoint, loaded_preproc)
if verbose:
print 'A better checkpoint is found. The global_step value is: ' + str(gs_init)
except:
if verbose:
print "Failed loading checkpoint requested. Please check."
exit()
# END TRY
else:
ckpt = model.load_default_weights()
# END IF
######################################################################################################################
# Initialize model variables
istraining = False
global_step = tf.Variable(gs_init, name='global_step', trainable=False)
number_of_videos = tf.Variable(num_vids, name='number_of_videos', trainable=False)
video_step = tf.Variable(1.0, name='video_step', trainable=False)
# TF session setup
config = tf.ConfigProto(allow_soft_placement=True)
sess = tf.Session(config=config)
init = tf.global_variables_initializer()
# Variables get randomly initialized into tf graph
sess.run(init)
data_path = os.path.join(base_data_path, 'tfrecords_'+dataset, 'Split'+str(split), f_name)
# Setting up tensors for models
# input_data_tensor - [batchSize, inputDims, height, width, channels]
input_data_tensor, labels_tensor, names_tensor = load_dataset(model, 1, batch_size, output_dims, input_dims, seq_length, size, data_path, dataset, istraining, clip_length, video_offset, clip_offset, num_clips, clip_stride, video_step, preproc_debugging, 0, verbose, reverse=reverse)
######### GPU list check block ####################
assert(len(gpu_list)<=1)
if len(gpu_list) == 0:
gpu_list = ['0'] # Default choice is ID = 0
# END IF
###################################################
################################################## Setup TF graph block ######################################################
# Model Inference
with tf.device('/gpu:'+gpu_list[0]):
logits = model.inference(input_data_tensor[0:batch_size,:,:,:,:],
istraining,
input_dims,
output_dims,
seq_length,
scope,
return_layer = return_layer)[0]
# Logits shape: [batchSize, seqLength, outputDims] if not, reshape
logits_shape = logits.get_shape().as_list()
if (logits_shape[0] != batch_size or logits_shape[1] != seq_length or logits_shape[2] != output_dims) and return_layer[0] == 'logits':
logits = tf.reshape(logits, [batch_size, seq_length, output_dims])
# END IF
if use_softmax:
logits = tf.nn.softmax(logits)
# END IF
# END WITH
############################################################################################################################################
if save_bool:
######################### Logger Setup block ######################################
# Logger setup (Name format: Date, month, hour, minute and second, with a prefix of exp_test)
log_name = ("exp_test_%s_%s_%s_%s_%s" % ( time.strftime("%d_%m_%H_%M_%S"),
dataset, preproc_method, experiment_name, metrics_method))
curr_logger = Logger(os.path.join('logs', model.name, dataset, preproc_method, metrics_dir, log_name))
make_dir(os.path.join('results',model.name))
make_dir(os.path.join('results',model.name, dataset))
make_dir(os.path.join('results',model.name, dataset, preproc_method))
make_dir(os.path.join('results',model.name, dataset, preproc_method, experiment_name))
make_dir(os.path.join('results',model.name, dataset, preproc_method, experiment_name, metrics_dir))
###################################################################################
# TF session setup
#sess = tf.Session()
init = (tf.global_variables_initializer(), tf.local_variables_initializer())
coord = tf.train.Coordinator()
threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord)
if save_bool:
metrics = Metrics( output_dims, seq_length, curr_logger, metrics_method, istraining, model.name, experiment_name, preproc_method, dataset, metrics_dir, verbose=verbose, topk=topk)
# Variables get randomly initialized into tf graph
sess.run(init)
# Check that weights were loaded or random initializations are requested
if ((ckpt == None) or (random_init)):
print "Caution: Model weights are not being loaded, using random initialization."
else:
# Model variables initialized from previous saved models
initialize_from_dict(sess, ckpt, model.name)
# END IF
del ckpt
acc = 0
count = 0
videos_loaded = 0
previous_vid_name = ''
total_pred = []
if verbose:
print "Begin Testing"
# END IF
########################################## Testing loop block ################################################################
while videos_loaded <= num_vids:
output_predictions, labels, names = sess.run([logits, labels_tensor, names_tensor])
if avg_clips:
output_predictions = np.array([np.mean(output_predictions, 0)])
names = names[:1]
for batch_idx in range(len(names)):
vid_name = names[batch_idx]
if vid_name != previous_vid_name:
previous_vid_name = vid_name
videos_loaded += 1
if verbose:
print "Number of videos loaded: ", videos_loaded
# Extract remaining clips from currently loaded video, once it finishes exit while loop
if videos_loaded > num_vids:
break
count += 1
if save_bool:
metrics.log_prediction(labels[batch_idx][0], output_predictions[batch_idx], vid_name, count)
# END IF
# END WHILE
#########################################################################################################################################################
# END WITH
coord.request_stop()
coord.join(threads)
if save_bool:
total_accuracy = metrics.total_classification()
total_pred = metrics.get_predictions_array()
if verbose:
print "Total accuracy : ", total_accuracy
print total_pred
# Save results in numpy format
np.save(os.path.join('results', model.name, dataset, preproc_method, experiment_name, metrics_dir, 'test_predictions_'+dataset+"_"+metrics_method+'.npy'), np.array(total_pred))
if __name__=="__main__":
if not args.train:
test( model = model,
input_dims = args.inputDims,
output_dims = args.outputDims,
seq_length = args.seqLength,
size = [args.size, args.size],
dataset = args.dataset,
loaded_dataset = args.loadedDataset,
experiment_name = args.expName,
num_vids = args.numVids,
split = args.split,
base_data_path = args.baseDataPath,
f_name = args.fName,
load_model = args.load,
return_layer = args.returnLayer,
clip_length = args.clipLength,
video_offset = args.videoOffset,
clip_offset = args.clipOffset,
num_clips = args.numClips,
clip_stride = args.clipStride,
metrics_method = args.metricsMethod,
batch_size = args.batchSize,
metrics_dir = args.metricsDir,
loaded_checkpoint = args.loadedCheckpoint,
verbose = args.verbose,
gpu_list = args.gpuList,
preproc_method = args.preprocMethod,
loaded_preproc = loaded_preproc,
random_init = args.randomInit,
avg_clips = args.avgClips,
use_softmax = args.useSoftmax,
preproc_debugging = args.preprocDebugging,
reverse = args.reverse,
topk = args.topk)
# END IF
import pdb; pdb.set_trace()