
not record the addition and removal of spurious mutations, and all of the second genomes of 
individuals in this model will be recorded as being null genomes (which you can test for with 
pyslim), producing a cleaner recorded tree sequence that better reflects the fact that those second 
genomes do not actually exist at all, conceptually.  The third benefit of using addRecombinant() is 
that it allows more complex modes of offspring generation to be expressed as well; as an example, 
in the next section we will see how to model horizontal gene transfer in bacteria using 
addRecombinant() to express the horizontal gene transfer to SLiM. 

16.14  Modeling clonal haploid bacteria with horizontal gene transfer 
In section 16.13 we looked at a model of clonal haploids using addRecombinant(), as an 

alternative to the original haploid clonal model presented in section 14.9.  The use of 
addRecombinant() allowed the details of child generation to be expressed precisely to SLiM, 
facilitating a simpler model design and more accurate recording of ancestry in the tree sequence (if 
tree-sequence recording were enabled; see section 1.7).  In this section we’ll explore those 
benefits in more detail in a model of horizontal gene transfer in bacteria. 

This is a more complex model than that of section 16.13, so let’s take things in two steps.  First, 
here is all of the code except the reproduction() callback: 

initialize() { 
 initializeSLiMModelType("nonWF"); 
 defineConstant("K", 1e5);                      // carrying capacity 
 defineConstant("L", 1e5);                      // chromosome length 
 defineConstant("H", 0.001);                    // HGT probability 
 initializeMutationType("m1", 1.0, "f", 0.0);   // neutral (unused) 
 initializeMutationType("m2", 1.0, "f", 0.1);   // beneficial 
 initializeGenomicElementType("g1", m1, 1.0); 
 initializeGenomicElement(g1, 0, L-1); 
 initializeMutationRate(0);                     // no mutations 
 initializeRecombinationRate(0);                // no recombination 
} 
1 early() { 
 // start from two bacteria with different beneficial mutations 
 sim.addSubpop("p1", 2, haploid=T); 
  
 // add beneficial mutations to each bacterium, but at different loci 
 g = p1.individuals.genome1; 
 g[0].addNewDrawnMutation(m2, asInteger(L * 0.25)); 
 g[1].addNewDrawnMutation(m2, asInteger(L * 0.75)); 
} 
early() { 
 // density-dependent population regulation 
 p1.fitnessScaling = K / p1.individualCount; 
} 
late() { 
 // detect fixation/loss of the beneficial mutations 
 muts = sim.mutations; 
 freqs = sim.mutationFrequencies(NULL, muts); 
  
 if (all(freqs == 1.0)) 
 { 
  catn(sim.generation + ": " + sum(freqs == 1.0) + " fixed."); 
  sim.simulationFinished(); 
 } 
} 
1e6 late() { catn(sim.generation + ": no result."); } 
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The initialize() code defines a few constants: the carrying capacity, the chromosome length, 
and the probability that horizontal gene transfer will occur during a given mitosis event.  Note that 
we will model horizontal gene transfer as occurring during reproduction, rather than as a discrete 
event occurring later in a bacterium’s lifetime.  This design is much simpler, particularly if tree-
sequence recording is enabled; horizontal gene transfer changes the genealogical relationships 
among individuals, and tree-sequence recording is not designed to accommodate such changes in 
the middle of an individual’s lifespan.  The approximation seems unlikely to matter. 

Note also that although we define a neutral mutation type here, m1, we do not model neutral 
mutations, and indeed, we use a mutation rate of 0.0.  This is because a model of this sort is likely 
to use tree-sequence recording to overlay neutral mutations after the fact for much greater speed; 
since we haven’t gotten into tree-sequence recording yet, however, we will defer that topic until 
sections 17.1 and 17.2.  For now, it suffices to say that we do not model neutral mutations here. 

The initial population here consists of just two bacteria, which are set up to carry different 
beneficial mutations at different locations in the genome.  The population will expand 
exponentially until reaching the carrying capacity of 1e5.  We have used a fairly large population 
size since we are modeling bacteria, but a carrying capacity of 1e6 or even higher might be 
desirable for some purposes.  Apart from taking more time and memory, this model should scale 
up without difficulties; the fact that neutral mutations are not included makes it scale much better. 

In the late() event we detect the fixation or loss of the beneficial mutations; if both mutations 
have fixed or been lost, the model prints a message indicating how many mutations fixed, and 
then stops.  If the model runs for 1e6 generations without fixation or loss, it stops with a message. 

All of that is routine.  Now here’s the reproduction() callback, where the interesting action is: 

reproduction() { 
 if (runif(1) < H) 
 { 
  // horizontal gene transfer from a randomly chosen individual 
  HGTsource = p1.sampleIndividuals(1, exclude=individual).genome1; 
   
  // draw two distinct locations; redraw if we get a duplicate 
  do breaks = rdunif(2, max=L-1); 
  while (breaks[0] == breaks[1]); 
   
  // HGT from breaks[0] forward to breaks[1] on a circular chromosome 
  if (breaks[0] > breaks[1]) 
   breaks = c(0, breaks[1], breaks[0]); 
   
  subpop.addRecombinant(genome1, HGTsource, breaks, NULL, NULL, NULL); 
 } 
 else 
 { 
  // no horizontal gene transfer; clonal replication 
  subpop.addRecombinant(genome1, NULL, NULL, NULL, NULL, NULL); 
 } 
} 

Each bacterium reproduces exactly once each generation, producing two bacteria from one, 
which makes sense from the perspective of reproduction by mitosis.  This reproduction can happen 
in two different ways, depending upon a random draw from runif().  If the draw is greater than or 
equal to H, reproduction is purely clonal as in the model of section 16.13; that is the else clause 
here.  If the draw is less than H, horizontal gene transfer occurs, which needs some explanation. 

In that case, we first draw a random individual (other than the focal individual) to act as the 
source for the transfer, and get its first genome.  Next we use a do–while loop to draw two distinct 
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locations along the genome; these will be the endpoints of the transfer.  Specifically, the transfer 
will start at breaks[0] and go forward to breaks[1].  For a bit of extra biological realism, we will 
model a circular chromosome here, so if breaks[0] is greater than breaks[1] the transfer will wrap 
around from the end of the genome to the start, as modelled in SLiM; we check for that case and 
patch up the breaks vector to reflect what we want to happen in that situation.  Finally, we call 
addRecombinant() to generate the offspring bacterium including the horizontal gene transfer.  We 
pass it to the parent genomes – that of the reproducing bacterium, and that of the horizontal gene 
transfer source – with the breakpoint vector that describes when SLiM should switch between 
those strands as it produces the offspring genome by recombination.  As before, we pass NULL for 
the next three parameters to indicate that the second offspring genome should be a null genome 
(conceptually, nonexistent).  (A diploid model that wanted to generate its own recombination 
breakpoints might use those parameters, for example.) 

Without horizontal gene transfer, this would be a model of clonal competition: one lineage 
would end up “winning” and the other would go extinct, although it might take a long time for 
that outcome to be reached since it would depend on drift.  This behavior can be seen by setting 
the defined constant H to 0.0.  With horizontal gene transfer, however, the bacteria will often 
stumble upon a lineage (or perhaps more than one lineage) that combines both mutations in the 
same genome, providing them with an advantage similar to that provided by recombination in 
sexual reproduction.  Once such a lineage arises it will almost always win, and we will get output 
like this from the model: 

197: 2 fixed. 

Both beneficial mutations fixed in generation 197, thanks to horizontal gene transfer. 
The details of the breakpoint generation here might need to be modified in a more realistic 

model.  Here we draw the start and end positions of the transfer region independently, but perhaps 
it would be better to draw the start location randomly and then draw a transfer length from a 
geometric distribution or some other distribution.  This would constrain the horizontal gene 
transfer to generally be a small minority of the genome, as is typical in the transfer of a plasmid or 
a transposon.  The location and length of the transfer could also be constrained by some sort of 
genetic structure to explicitly model the transfer of a plasmid that spans a given range of the 
genome, of course.  The reproduction() callback could also base the choice of whether or not 
horizontal gene transfer occurs upon the contents of the two genomes in question, not just upon a 
random probability; one could model a selfish gene in the transfer donor that makes horizontal 
gene transfer more likely to occur, for example.  Since all of the logic governing the horizontal 
gene transfer is in the model’s script, it can include whatever biological realism is of interest. 

Note that prior to the addition of addRecombinant() in SLiM, it would have been possible to 
model horizontal gene transfer by actually getting all of the mutations from the transfer region out 
of the source’s genome, and then adding them into the target’s genome with addMutations() 
(removing any existing mutations from the target region first).  This would work fine except that it 
obscures what is actually going on in terms of genealogy and inheritance.  If tree-sequence 
recording were used with such a model, the transferred region would not be recorded as 
originating in the source genome; instead, the mutations would just magically appear in the target 
genome, with no genealogical relationship between source and target recorded in the tree 
sequence.  The method presented here, using addRecombinant(), is therefore preferable.  (If one 
needed to model even more complex patterns of inheritance – offspring genomes that consist of a 
mosaic of genetic material from more than two parental genomes, for example – using the 
addMutations() technique might still be necessary, however, since addRecombinant() is designed 
to record at most two parental genomes for each offspring genome.  Tree-sequence recording 
would not work well in such a model, however.) 
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To make a relatively realistic model of bacterial evolution with SLiM, this sort of realistic 
inheritance and horizontal gene transfer is one important ingredient.  The other important 
ingredient is the ability to model a sufficiently large population size, which is often made possible 
by the performance benefits provided by tree-sequence recording as we will see in chapter 17. 

16.15  Implementing a Wright–Fisher model with a nonWF model 
In this chapter, we have focused on aspects of nonWF models that go beyond the Wright–Fisher 

model, such as overlapping generations, age structure, and individual-level control over 
reproduction and migration.  Sometimes, however, it can be useful to implement a Wright–Fisher 
model as a nonWF model in SLiM – or at least some aspects of a Wright–Fisher model.  You might 
want to have discrete, non-overlapping generations, for example; or you might want panmictic 
offspring generation as in the Wright–Fisher model, with each offspring being generated from an 
independent, randomly drawn pair of parents.  Implementing such a model using the nonWF 
model type might still be desirable, because you might also want some non-Wright–Fisher 
dynamics in your model that would be difficult to implement in a WF model, or you might want to 
take advantage of certain features of SLiM that are only available in nonWF models.  In this 
section, we will look at two nonWF models that incorporate aspects of the Wright–Fisher model.  
Both models will include deleterious mutations in addition to neutral mutations, to show how each 
model treats fitness. 

The first recipe here is quite simple, so let’s look at it in full: 

initialize() { 
 initializeSLiMModelType("nonWF"); 
 initializeMutationType("m1", 0.5, "f", 0.0); 
 m1.convertToSubstitution = T; 
 initializeMutationType("m2", 0.0, "f", -0.5); 
 initializeGenomicElementType("g1", c(m1, m2), c(1.0, 0.05)); 
 initializeGenomicElement(g1, 0, 99999); 
 initializeMutationRate(1e-7); 
 initializeRecombinationRate(1e-8); 
} 
reproduction() { 
 K = sim.getValue("K"); 
  
 // parents are chosen randomly, irrespective of fitness 
 parents1 = p1.sampleIndividuals(K, replace=T); 
 parents2 = p1.sampleIndividuals(K, replace=T); 
  
 for (i in seqLen(K)) 
  p1.addCrossed(parents1[i], parents2[i]); 
   
 self.active = 0; 
} 
1 early() { 
 sim.setValue("K", 500); 
 sim.addSubpop("p1", sim.getValue("K")); 
} 
early() 
{ 
 // parents die; offspring survive proportional to fitness 
 inds = sim.subpopulations.individuals; 
 inds[inds.age > 0].fitnessScaling = 0.0; 
} 
10000 late() { sim.outputFixedMutations(); } 
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