
the scenario being simulated, rather than upon performance.  If a model is big and complex 
enough that its runtime is problematic – i.e., is measured in hours to days – the overhead due to 
choosing the nonWF model type will probably be small. 

16.16  Alternation of generations 
SLiM is generally a framework for modeling diploid organisms, but with some creative scripting 

that assumption can be modified.  We have seen some recipes for modeling haploids, as in 
sections 14.9, 16.13, and 16.14.  In nonWF models a similar strategy can be used to fully model 
the phenomenon of alternation of generations, the way that diploid and haploid life cycle stages 
generally alternate in organisms that are often thought of simply as “diploids”.  Many sexual 
animals, for example, have a multicellular diploid phase that produces a unicellular haploid phase 
– sperm and eggs – that then fuse, in fertilization, to produce the next diploid generation.  In plants 
this situation is generally even more pronounced, often with a multicellular haploid phase, the 
gametophyte, that can be free-living and large – often larger and more obvious than the diploid 
sporophyte, which is often reduced.  For many organisms, then, it may be important to model both 
the haploid and diploid phases explicitly; mutations may be expressed differently between them, 
selection may act differently upon them, they may migrate or disperse differently, and so forth.  
SLiM does not have intrinsic support for modeling this alternation of generations, but it is 
straightforward to implement in script in a nonWF model, as we will see in this section. 

This model will be somewhat complicated, so let’s start with the setup: 

initialize() 
{ 
 defineConstant("K", 500);     // carrying capacity (diploid) 
 defineConstant("MU", 1e-7);   // mutation rate 
 defineConstant("R", 1e-7);    // recombination rate 
 defineConstant("L1", 1e5-1);  // chromosome end (length - 1) 
  
 initializeSLiMModelType("nonWF"); 
 initializeSex("A"); 
 initializeMutationRate(MU); 
 initializeMutationType("m1", 0.5, "f", 0.0); 
 m1.convertToSubstitution = T; 
 initializeGenomicElementType("g1", m1, 1.0); 
 initializeGenomicElement(g1, 0, L1); 
 initializeRecombinationRate(R); 
} 
1 early() 
{ 
 sim.addSubpop("p1", K); 
 sim.addSubpop("p2", 0); 
} 

We use defined constants for several of the model parameters.  The recipe here involves only 
neutral mutations, but extending it to other types of mutations should present no difficulties. 

This is a sexual model, so we set up separate sexes with initializeSex().  We are not 
modeling sex chromosomes, but we will track the sex of individuals in both the diploid and 
haploid phase; sperm will be considered “male”, and eggs “female”, in this model. 

A key point in the design of this model is that although we are modeling only a single 
subpopulation, we use two subpopulations in the model, p1 and p2.  The first, p1, is used to hold 
diploids; the second, p2, is used to hold the haploid sperm and eggs.  This separation is not strictly 
necessary, but it makes the design of the model simpler, because this way we can define a 
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reproduction() callback for p1 that reproduces the diploids (producing sperm and eggs), and a 
separate reproduction() callback for p2 that reproduces the haploids (producing fertilized eggs 
that develop into diploids).  For other processing of the individuals in the model, such as 
fitness() callbacks, this partitioning will also prove useful, as we will see below. 

The next step is to define the reproduction() callbacks.  Let’s start with the one for p1: 

reproduction(p1) 
{ 
 g_1 = genome1; 
 g_2 = genome2; 
  
 for (meiosisCount in 1:5) 
 { 
  if (individual.sex == "M") 
  { 
   breaks = sim.chromosome.drawBreakpoints(individual); 
   s_1 = p2.addRecombinant(g_1, g_2, breaks, NULL, NULL, NULL, "M"); 
   s_2 = p2.addRecombinant(g_2, g_1, breaks, NULL, NULL, NULL, "M"); 
    
   breaks = sim.chromosome.drawBreakpoints(individual); 
   s_3 = p2.addRecombinant(g_1, g_2, breaks, NULL, NULL, NULL, "M"); 
   s_4 = p2.addRecombinant(g_2, g_1, breaks, NULL, NULL, NULL, "M"); 
  } 
  else if (individual.sex == "F") 
  { 
   breaks = sim.chromosome.drawBreakpoints(individual); 
   if (runif(1) <= 0.5) 
    e = p2.addRecombinant(g_1, g_2, breaks, NULL, NULL, NULL, "F"); 
   else 
    e = p2.addRecombinant(g_2, g_1, breaks, NULL, NULL, NULL, "F"); 
  } 
 } 
} 

The definitions of g_1 and g_2 at the beginning are just shorthand, to keep the lines later in the 
callback from being so long that they wrap when shown here.  As usual in nonWF models, this 
callback is called by SLiM once per individual in p1, giving the individual an opportunity to 
reproduce – in this model, an opportunity to produce gametes.  The top-level loop causes the focal 
diploid individual to undergo meiosis exactly five times; this is an oversimplification, obviously, 
but there is no need, in most models, to generate millions of sperm.  Within the loop, male 
individuals undergo meiosis by producing four sperm, whereas females produce just a single egg 
(plus three “polar bodies” that are discarded by meiosis in most sexual species, due to anisogamy; 
the polar bodies are not modeled here). 

Gametes are produced by the addRecombinant() method, adding the resulting haploid 
individuals to p2.  The calls to addRecombinant() here pass NULL for the genomes and breakpoints 
that generate the second genome of the offspring; this results in an empty second genome in the 
offspring, as is typical when modeling haploids in SLiM.  The genomes used to generate the first 
genome of the offspring can be supplied as either (g_1, g_2) or (g_2, g_1); the first of the two 
genomes supplied is the copy strand at the beginning of recombination.  Since the sperm 
generated use all of the genetic material from meiosis, both of those options are used (twice, 
because of the homologous chromosomes involved in meiosis); since egg generation produces 
only a single gamete, the choice of initial copy strand is randomized with a call to runif(). 

Particularly for the sperm, since we want to generate the gametes in a realistic fashion following 
the rules of meiosis, we generate the recombination breakpoints ourselves and use them to 
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generate complementary gametes.  To generate breakpoints in the standard SLiM fashion, we call 
the drawBreakpoints() method of Chromosome; by default this produces a set of breakpoints 
identical to what SLiM would generate for its own internal use in reproduction.  The number of 
recombination breakpoints generated is chosen by drawBreakpoints(), by default, using the 
overall recombination rate defined by the model. 

Now let’s look at the reproduction() callback for p2, which contains haploid gametes: 

reproduction(p2, "F") 
{ 
 mate = p2.sampleIndividuals(1, sex="M", tag=0); 
 mate.tag = 1; 
  
 child = p1.addRecombinant(individual.genome1, NULL, NULL, 
  mate.genome1, NULL, NULL); 
} 

This callback is defined only for females – i.e., eggs.  Each eggs gets to “reproduce” – be 
fertilized – to produce a new diploid organism in p1.  In this model a random sperm is chosen to 
fertilize each egg, but one could easily implement phenomena such as sperm competition here to 
make the choice non-random.  We mark sperm that have been used to fertilize an egg with a tag 
value of 1, so that they will not be used again; when we draw a random sperm, we specify in the 
call to sampleIndividuals() that the sperm chosen must have a tag value of 0, indicating that it 
has not already been used.  Once the fertilizing sperm has been selected, it is tagged with a value 
of 1, and the diploid zygote is generated with a call to addRecombinant().  The call to 
addRecombinant() here supplies only a single genome for each of the offspring genomes, with 
NULL for the breakpoint vectors; this makes the offspring’s genomes a clonal copy of the 
corresponding genomes from the gametes.  Normally, new mutations would be generated and 
added by SLiM during this clonal replication; we will fix that momentarily. 

These callbacks implement the generation of gametes and then the fusion of gametes to 
produce diploid zygotes; but a little additional machinery is needed, which we implement in an 
early() callback that cleans up after reproduction and sets up for the next reproduction event: 

early() 
{ 
 if (sim.generation % 2 == 0) 
 { 
  p1.fitnessScaling = 0.0; 
  p2.individuals.tag = 0; 
  sim.chromosome.setMutationRate(0.0); 
 } 
 else 
 { 
  p2.fitnessScaling = 0.0; 
  p1.fitnessScaling = K / p1.individualCount; 
  sim.chromosome.setMutationRate(MU); 
 } 
} 

In even-numbered generations the top half of this event will execute; in odd-numbered 
generations the bottom half will execute.  In an even-numbered generation, at the point that 
early() events are called, p1 will have just generated gametes.  This recipe assumes non-
overlapping generations, so here we kill off the diploids by setting their fitnessScaling to 0.0; p1 
will be emptied out completely.  Next, we set the tag values of all of the gametes in p2 to 0; this 
marks all of the sperm as unused, in preparation for the way the reproduction(p2) callback uses 
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the tag field.  Finally, we set the mutation rate to 0.0; we do not want new mutations to be 
generated by SLiM during fertilization, so we need to disable mutation temporarily. 

In odd-numbered generations, gametes have just undergone fertilization, filling p1 up with new 
diploid offspring.  We therefore kill off the haploid gametes by setting their fitnessScaling to 0.0; 
p2 will be emptied out completely.  Since each egg produces a zygote, we will have way too many 
diploids; we will be far above carrying capacity.  The next line thus implements density-dependent 
selection on p1, as usual in nonWF models; note that no such density-dependence was imposed 
upon the gametes in this model.  Finally, we set the mutation rate back up to the defined constant 
MU, since we want new mutations to arise during gamete production. 

With this design, the population will flip back and forth between p1 and p2 as it flips between 
diploidy and haploidy, and the mutation rate will flip on and off as well.  It would be 
straightforward to implement overlapping generations of diploids in this model; one could even 
delve into more esoteric ideas such as sperm storage.  Fitness effects could differ in the haploid 
and diploid phases, by implementing fitness() callbacks that apply only to p1 or p2. 

All that is left to finish off the model is a termination event, which here is trivial: 

1000 late() 
{ 
 sim.simulationFinished(); 
} 

This approach to modeling the alternation of generations may be overkill in many practical 
situations.  This model runs much more slowly than the equivalent model of only the diploid 
phase; for one thing, it is generating a population of gametes that is more than ten times larger 
than the population of diploids, every generation.  Other strategies for modeling life cycle 
complexity may be usable instead; section 16.8, for example, presents a model of pollen flow 
between subpopulations of plants, which is simple to model without getting down to the details of 
modeling individual pollen grains and the sperm cells they produce as separate entities.  
Additional biological realism should generally be incorporated into a model only when there is 
reason to believe that it matters – that it would affect the results of the model.  In some cases, 
however – such as when one wishes to have selection operate in the haploid phase – the 
additional biological realism of modeling alternation of generations may be useful. 

Even more esoterically, one could use the same basic concepts to develop models of mating 
systems such as haplodiploidy; all that is really needed is to set up rules of reproduction that move 
the genomes around from individual to individual in the correct way using addRecombinant(), 
which is designed to be as flexible as possible in order to accommodate these sorts of purposes.  
Partitioning the population according to genetics – here, diploids versus haploids – is a useful trick 
in many scenarios.  Indeed, such artificial partitioning can be very useful in other contexts too, 
such as storing non-reproducing juveniles separately from reproductive adults, or storing sympatric 
but reproductively isolated groups separately.  Since the spatial interaction engine of 
InteractionType evaluates interactions on a per-subpopulation basis (see chapter 15), it can also be 
useful to partition the population according to “interaction groups” – sets of individuals that 
interact with each other, but not with the individuals in other interaction groups. 

16.17  Meiotic drive 
In section 12.3 we saw a model of a gene drive, a genetic construct that drives itself higher in 

frequency by copying itself from one chromosome to the other.  We implemented that mechanism 
with a modifyChild() callback that copied the drive allele from one child genome to the other in 
each newly generated offspring.  In this section, we will look at a different type of drive: meiotic 
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