
survival() callbacks are provided with information on the survival decision made by SLiM for 
every individual, including each individual’s final calculated fitness value, they can also be used 
purely observationally – for example, to log out the fitness value of each individual along with the 
outcome of selection for that individual, or similar information (see section 16.12). 

16.23  Tracking separate sexes in script, nonWF style 
Section 12.5 showed how to track the sex of individuals yourself in script in a WF model, using 

the tag property to represent the sex of each individual.  In this section we will look at the same 
idea implemented in a nonWF model. 

This approach can be useful for implementing unusual mating systems that don’t fit well into 
SLiM’s conception of sex.  In sexual models in SLiM, for example, SLiM does not allow selfing; it is 
assumed that females produce eggs and male individuals produce sperm, and that one egg and 
one sperm are required for fertilization.  There are some sexual species, however, that can 
reproduce by methods such as automixis – the fusion of nuclei or gametes produced by the same 
individual – that violate this assumption.  In this section, by way of illustration, we will implement 
a sexual species that usually reproduces by biparental mating between a female and a male, to 
produce an offspring of either sex, but in which a female can also sometimes reproduce by 
automixis, without a male mate, to produce a daughter. 

There are various forms of automixis; for simplicity, we will here implement a form of automixis 
in which any two randomly chosen gametes from the focal female fuse, but we will discuss other 
types of automixis at the end.  The focus here is not really on automixis; that is just used as a 
pedagogical example to justify the explicit tracking of sex in script, rather than using 
initializeSex("A") and letting SLiM do it for us. 

Here’s the whole model except the reproduction() callback: 

initialize() { 
 initializeSLiMModelType("nonWF"); 
 defineConstant("K", 500); // carrying capacity 
 initializeMutationType("m1", 0.5, "f", 0.0); 
 m1.convertToSubstitution = T; 
 initializeGenomicElementType("g1", m1, 1.0); 
 initializeGenomicElement(g1, 0, 99999); 
 initializeMutationRate(1e-7); 
 initializeRecombinationRate(1e-8); 
} 
1 early() { 
 sim.addSubpop("p1", K); 
  
 // assign random sexes (0 = male, 1 = female) 
 p1.individuals.tag = rbinom(p1.individualCount, 1, 0.5); 
} 
early() { 
 p1.fitnessScaling = K / p1.individualCount; 
} 
1:2000 late() { 
 ratio = sum(p1.individuals.tag == 0) / p1.individualCount; 
 catn(sim.generation + ": " + ratio); 
} 

The initialization is boilerplate; note that we do not call initializeSex() here, since we do not 
want SLiM to track sex itself.  In the 1 early() event we draw a random sex for each individual 
from a binomial distribution, and assign those sex values into the tag property of the individuals; 
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completely arbitrarily, we designate 0 as male and 1 as female.  In the 1:2000 late() event we 
output the sex ratio in each generation (calculated as M:(M+F), following the definition used by 
SLiM), since the sex ratio will provide a test that the model is working as intended. 

The reproduction() callback is also quite simple: 

reproduction() { 
 // we focus on the reproduction of the females here 
 if (individual.tag == 1) 
 { 
  if (runif(1) < 0.7) 
  { 
   // choose a male mate and produce a son or daughter 
   mate = subpop.sampleIndividuals(1, tag=0); 
   offspring = subpop.addCrossed(individual, mate); 
   offspring.tag = rbinom(1, 1, 0.5); 
  } 
  else 
  { 
   // reproduce through automixis to produce a daughter 
   offspring = subpop.addSelfed(individual); 
   offspring.tag = 1; 
  } 
 } 
} 

We want to focus on the reproduction of females here; usually we could do that by declaring 
the callback as reproduction(NULL, "F"), but since we’re tracking sex ourselves in tag, we need 
to test that the focal individual is female ourselves.  If the focal individual is female, we then roll 
the dice; with a 70% chance, we choose a mate with sampleIndividuals(), narrowing the pool of 
eligible individuals to males using tag=0, and then call addCrossed() to produce one offspring 
from that biparental mating.  That offspring is assigned a sex randomly, with equal probability.  The 
remaining 30% of the time, we have the female reproduce by automixis, by calling addSelfed().  
This is the step that SLiM would not allow in a normal sexual model; addSelfed() can only be 
called in non-sexual models.  (This limitation was put in place to clarify how to implement selfing 
when modeling sex chromosomes.)  Since this is, in SLiM’s view, a non-sexual model, we are 
allowed to call it.  The offspring resulting from this automixis is always female (following the 
biology of some species with automixis). 

When the model is run, it can be seen that the calculated sex ratio starts around 0.5 but quickly 
falls to an average of about 0.35.  This is expected, since males are produced only by biparental 
mating, which happens 70% of the time.  Any given offspring will therefore be male with a 
probability of 0.7×0.5 = 0.35.  Our tracking of sex appears to be working properly. 

This model can easily be extended in various directions.  One could track more than just two 
sexes or mating types; the tag property can be used however, you wish, and you can control how 
it affects reproduction with your own custom script.  You could model fish that change sex over the 
course of their lives (as some do), alternative sexual types like “sneaker males”, sex determination 
according to environmental cues like temperature, species with ZW sex chromosomes instead of 
XY (if there are biological details that make that distinction important for your model), or anything 
else of the sort. 

As mentioned at the outset, automixis is a complex topic, and it is not our real focus here.  We 
have implemented automixis by simply calling addSelfed(), which generates two haploid gametes 
from the focal female using SLiM’s standard recombination machinery and fuses them to form the 
diploid offspring.  The biological reality is that depending upon whether a species uses “central 
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fusion automixis”, “terminal fusion automixis”, or some other type, the gametes that fuse to 
produce the offspring may have certain properties because they are derived from certain specific 
points in the process of meiosis (Wikipedia has a helpful diagram in its article on automixis).  In 
this case, addSelfed() does not provide the desired behavior, and the addRecombinant() method is 
the more powerful alternative.  With addRecombinant(), you can control the exact set of 
recombination breakpoints used to generate each of the two gametes used by SLiM in the 
offspring, making them exhibit the necessary properties.  We will not show an example of that 
approach here, but other recipes in this manual do use addRecombinant() for various other 
purposes; section 16.17 might be particularly relevant as an example of the general approach.  
Generating your own breakpoints is reasonably straightforward, either by using the 
drawBreakpoints() method of Chromosome (if SLiM’s default breakpoint generation is acceptable, 
perhaps with some modification), or by generating them yourself using functions like rbinom() to 
determine the number of breakpoints and rdunif() to draw each breakpoint’s position.  Section 
1.5.6 discusses SLiM’s default recombination breakpoint generation algorithm in detail; you might 
wish to pattern your own breakpoint generation algorithm after it. 

16.24  Modeling haplodiploidy with addRecombinant() 
We have seen ways of handling a variety of mating systems in SLiM, including selfing (section 

6.3.1), cloning (section 6.3.2), haploidy (sections 14.9, 16.13, and 16.14), and alternation of 
generations (section 16.16), as well as how to track separate sexes yourself in script in order to 
implement more unusual mating systems such as automixis (sections 12.5 and 16.23).  One fairly 
common mating system we have not covered yet is haplodiploidy.  In haplodiploidy (sometimes 
called arrhentoky), males develop from unfertilized eggs and are haploid, while females develop 
from fertilized eggs and are diploid.  It is particularly well-known as the sex-determination system 
in the Hymenoptera (bees, ants, and wasps), and has interesting effects on the relatedness of 
individuals that may promote the emergence of eusociality. 

The haplodiploidy model presented here was developed in collaboration with Rodrigo Pracana, 
Richard Burns, Robert L. Hammond, and Yannick Wurm, and a related preprint has been posted on 
bioRxiv at https://doi.org/10.1101/2021.10.25.465450.  The model presented in that publication is 
fairly different from the one shown here; it implements a Wright–Fisher model design (but written 
as a nonWF SLiM model), with non-overlapping generations, a fixed population size, and fitness 
that acts through mating success.  In that model, all reproduction occurs in a single “big bang”, 
generating all of the individuals needed to fill out the next generation.  It therefore follows the 
recipe of section 16.15, which shows how to implement a Wright–Fisher model as a nonWF 
model.  (In fact it goes even further than that recipe does, in making fitness influence mating 
success rather than reproduction!)  That paper will likely be of interest to those modeling 
haplodiploidy in SLiM, as it explores some of the consequences of haplodiploidy for deleterious 
and beneficial mutations and compares simulations in SLiM to some prior analytical work.  If the 
SLiM code from either that paper or this section is adapted for use in a publication, a citation to 
Pracana, Burns, Hammond, Haller, & Wurm (2021) would be much appreciated.  Thanks to my 
collaborators for welcoming the publication of this recipe here. 

In this section, on the other hand, we will look at a very minimal nonWF haplodiploidy model; 
to keep things simple it will follow typical nonWF model conventions such as overlapping 
generations, density-dependent population regulation, and fitness that acts through survival.  Each 
female will reproduce independently, via a separate callout to the reproduction() callback.  In all 
these respects, this recipe follows the very simple nonWF template of the recipe in section 16.1. 

OK, with that background information out of the way, let’s look at the model!  Note that this 
model requires SLiM 3.7 to run.  Here’s the initialize() callback: 
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initialize() { 
 defineConstant("K", 2000); 
 defineConstant("P_OFFSPRING_MALE", 0.8); 
 initializeSLiMModelType("nonWF"); 
 initializeMutationRate(1e-8); 
 initializeMutationType("m1", 0.0, "f", 0.0); 
 m1.convertToSubstitution = T; 
 m1.haploidDominanceCoeff = 1.0; 
 initializeGenomicElementType("g1", m1, 1.0); 
 initializeGenomicElement(g1, 0, 999999); 
 initializeRecombinationRate(1e-6); 
 initializeSex("A"); 
} 

We define a carrying capacity K of 2000.  We also define a parameter, P_OFFSPRING_MALE, that is 
the probability that a given offspring generated by a female will be a (haploid) male, as opposed to 
a (diploid) female.  Here that is set to 0.8, quite arbitrarily; offspring will be mostly males. 

We set up a neutral mutation type, m1; this model can also accommodate non-neutral 
mutations, but we won’t do that here for simplicity.  We set convertToSubstitution to T so these 
neutral mutations get substituted by SLiM when they fix (see section 1.5.2); note that SLiM will 
correctly detect fixation even though the model contains a mixture of haploids and diploids.  We 
also set the haploidDominanceCoeff property to 1.0.  This property is used as the “dominance” 
coefficient in haploids, where mutations can only be present in a single copy.  Recall that in 
diploids, a homozygous mutation has a fitness effect of 1+s ,where s is the selection coefficient of 
the mutation, and a heterozygous mutation has a fitness effect of 1+hs, where h is the dominance 
coefficient kept in the dominanceCoeff property of MutationType.  You might want a mutation to 
have a different fitness effect when found in a haploid – not 1+s, and not 1+hs, but rather 1+zs, 
where z is the value of the haploidDominanceCoeff property (note that I just made up the use of 
the symbol z here, that is not a standard convention).  Here we set this to 1.0, but it doesn’t matter 
anyway since this is a neutral model.  Note that if you wanted even finer control over the fitness 
effects of mutations in haploids you could achieve that with a fitness() callback. 

The rest of the initialization is quite standard.  We use initializeSex("A") to ask SLiM to track 
separate sexes for us; we don’t do anything here that requires us to use the techniques of section 
16.23 to track sex ourselves. 

Here’s the rest of the framework of the model, apart from the reproduction() callback: 

1 early() { 
 // make an initial population with the right genetics 
 mCount = asInteger(K * P_OFFSPRING_MALE); 
 fCount = K - mCount; 
 sim.addSubpop("p1", mCount, sexRatio=1.0, haploid=T); // males 
 sim.addSubpop("p2", fCount, sexRatio=0.0, haploid=F); // females 
 p1.takeMigrants(p2.individuals); 
 p2.removeSubpopulation(); 
} 
early() { 
 p1.fitnessScaling = K / p1.individualCount; 
} 
10000 late() { 
 sim.simulationFinished(); 
} 

The early() event implements density-dependent fitness, and the 10000 late() event defines 
the end of the simulation.  The interesting bit is the 1 early() event that creates the initial 
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population.  First, it uses P_OFFSPRING_MALE to calculate the initial number of males and females in 
the subpopulation.  Then it creates all the males in p1, passing sexRatio=1.0 to make them all 
male, and haploid=T to make them all haploid.  Similarly, it creates all the females in p2, passing 
sexRatio=0.0 to make them all female, and haploid=F to make them all diploid.  It moves the 
females into p1 with takeMigrants(), and then removes p2 from the model.  This sleight of hand 
lets us use addSubpop() to easily create the males and females we want.  We could avoid the use 
of p2 by creating p1 with an initial size of 0, and then filling it up with new empty individuals with 
the appropriate genetics using addEmpty() in a 1 reproduction() callback, but this design is much 
simpler, and the ephemeral existence of p2 is fairly harmless.  (If you use tree-sequence recording 
with this model, the initial creation of the females in p2 might make for problems with recapitation 
and so forth; in that case, the addEmpty() technique might be better.  You could also simply call 
sim.addSubpop("p1", K, sexRatio=P_OFFSPRING_MALE) to create the initial subpopulation; this 
will make the males in the first generation be diploid, but that ought to be harmless since their 
second genomes will never be used for anything.) 

Finally, here is the reproduction() callback, which runs only for females since it is declared 
with "F" for its focal sex: 

reproduction(NULL, "F") { 
 // choose an initial copy strand based on a coin flip 
 strand = rbinom(1, 1, 0.5); 
 gen1 = strand ? individual.genome1 else individual.genome2; 
 gen2 = strand ? individual.genome2 else individual.genome1; 
 breaks = sim.chromosome.drawBreakpoints(individual); 
  
 // decide whether we're generating a haploid male or a diploid female 
 if (rbinom(1, 1, P_OFFSPRING_MALE)) 
 { 
  // didn't find a mate; make a haploid male from an unfertilized egg: 
  //  - one genome comes from recombination of the female's genomes 
  //  - the other genome is a null genome (a placeholder) 
  subpop.addRecombinant(gen1, gen2, breaks, NULL, NULL, NULL, "M"); 
 } 
 else 
 { 
  // found a mate; make a diploid female from a fertilized egg: 
  //  - one genome comes from recombination of the female's genomes 
  //  - the other genome comes from the mate (a haploid male) 
  mate = subpop.sampleIndividuals(1, sex="M"); 
  subpop.addRecombinant(gen1, gen2, breaks, mate.genome1, NULL, NULL, "F"); 
 } 
} 

This handles all the key details of haplodiploidy.  We will generate the offspring using the 
method addRecombinant(); it is a very low-level method, so we will need to tell it exactly what to 
do (see section 24.14.12).  For this reason, we need to choose which of the female’s genomes will 
be the initial copy strand when generating the egg.  We do that up front, using rbinom() as a coin 
flip, and assign gen1 to be the initial copy strand and gen2 to be the other strand.  Next, since we 
will need crossover breakpoints to pass to addRecombinant() to generate the egg, we get them 
from sim.chromosome, which draws them following SLiM’s standard procedure.  Finally, we need to 
decide whether we’re going to generate a (haploid) male or a (diploid) female offspring.  We again 
use rbinom(), with P_OFFSPRING_MALE as the probability for male. 

If the offspring is male, there is no mate; the egg is unfertilized.  In this case, we call 
addRecombinant() with gen1, gen2, breaks for the parental genomes and breakpoints for the egg, 
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and NULL, NULL, NULL for the sperm to indicate that there is no sperm.  This makes the second 
genome of the offspring a null genome, indicating that the offspring is haploid.  Finally, we pass 
"M" to addRecombinant() to tell it the offspring is male. 

If the offspring is female, we first have to choose a mate.  We use sampleIndividuals() to do 
this, requiring only that the mate be male; of course, further restrictions could be placed on that 
selection.  Then we call addRecombinant(), passing gen1, gen2, breaks as before for the egg.  
Here, however, we pass mate.genome1, NULL, NULL for the sperm, indicating that the sperm 
carries a copy of the male’s haploid genome, without a second strand and without recombination.  
Finally, we pass "F" to tell addRecombinant() the offspring is male. 

That’s all there is to it; it’s really quite straightforward.  Implementing these sorts of mating 
system is mainly a matter of thinking through the biological logic: who mates with whom, who is 
what ploidy, and where each offspring chromosome comes from.  Translate that logic into the 
appropriate calls to addCrossed(), addCloned(), addSelfed(), and addRecombinant() in your 
reproduction() callback, and things will often go quite smoothly.  If you need to violate rules that 
SLiM normally enforces – having a non-hermaphroditic individual self, for example, or having 
more than two sexes – you may want to track the sex of individuals yourself, as shown in section 
16.23. 

Breaking with our usual procedure, we will not show results from this recipe here; 
demonstrating the correctness of this model is really beyond the scope of this manual.  Instead, the 
reader is encouraged to consult Pracana, Burns, Hammond, Haller, & Wurm (2021), which 
analyzes results from a fairly similar model to show that they match the predictions for 
haplodiploidy made by analytical models. 
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