forked from prdwb/orconvqa-release
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pipeline.py
961 lines (790 loc) · 41.6 KB
/
train_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
#!/usr/bin/env python
# coding: utf-8
# In[1]:
from __future__ import absolute_import, division, print_function
# import os
# os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"]="1,2"
from stdargparser import StdArgparser
import logging
import os
import platform
import random
import glob
import timeit
import json
import linecache
import faiss
import numpy as np
import pickle as pkl
from tqdm import tqdm, trange
import pytrec_eval
import scipy as sp
from copy import copy
import joblib
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from transformers import WEIGHTS_NAME, BertConfig, BertTokenizer, AlbertConfig, AlbertTokenizer
from transformers import AdamW, get_linear_schedule_with_warmup
from utils import (LazyQuacDatasetGlobal, RawResult,
write_predictions, write_final_predictions,
get_retrieval_metrics, gen_reader_features)
from retriever_utils import RetrieverDataset
from modeling import Pipeline, AlbertForRetrieverOnlyPositivePassage, BertForOrconvqaGlobal
from scorer import quac_eval
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def to_list(tensor):
return tensor.detach().cpu().tolist()
def train(args, train_dataset, model, retriever_tokenizer, reader_tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter(os.path.join(args.output_dir, 'logs'))
# TODO fix args override, realy dude?
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(
train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, num_workers=args.num_workers)
if args.max_steps > 0:
t_total = args.max_steps
# TODO fix args override, realy dude?
args.num_train_epochs = args.max_steps // (
len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(
train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(
nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(
nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters,
lr=args.learning_rate, eps=args.adam_epsilon)
# TODO fix args override, realy dude? staaaphhh
args.warmup_steps = int(t_total * args.warmup_portion)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
# TODO dont do this here
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(
model, optimizer, opt_level=args.fp16_opt_level)
# TODO fair enough, should go through future resource-manager class
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# model.to(f'cuda:{model.device_ids[0]}')
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d",
args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d",
args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 1
tr_loss, logging_loss = 0.0, 0.0
retriever_tr_loss, retriever_logging_loss = 0.0, 0.0
reader_tr_loss, reader_logging_loss = 0.0, 0.0
qa_tr_loss, qa_logging_loss = 0.0, 0.0
rerank_tr_loss, rerank_logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs),
desc="Epoch", disable=args.local_rank not in [-1, 0])
# TODO fun, eval doesnt even run on python 3.6 (only 3.7), I think this comment might be old
# Added here for reproductibility (even between python 2 and 3)
set_seed(args)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration",
disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.eval() # we first get query representations in eval mode
# TODO casting to numpy and back to list seems inefficient
qids = np.asarray(batch['qid']).reshape(-1).tolist()
# print('qids', qids)
question_texts = np.asarray(
batch['question_text']).reshape(-1).tolist()
# print('question_texts', question_texts)
answer_texts = np.asarray(
batch['answer_text']).reshape(-1).tolist()
# print('answer_texts', answer_texts)
answer_starts = np.asarray(
batch['answer_start']).reshape(-1).tolist()
# print('answer_starts', answer_starts)
query_reps = gen_query_reps(args, model, batch)
retrieval_results = retrieve(args, qids, qid_to_idx, query_reps,
passage_ids, passage_id_to_idx, passage_reps,
qrels, qrels_sparse_matrix,
gpu_index, include_positive_passage=True)
#TODO might be nice to create some kind of RetrievalResults class so we dont need this indexing
passage_reps_for_retriever = retrieval_results['passage_reps_for_retriever']
labels_for_retriever = retrieval_results['labels_for_retriever']
pids_for_reader = retrieval_results['pids_for_reader']
# print(pids_for_reader)
passages_for_reader = retrieval_results['passages_for_reader']
labels_for_reader = retrieval_results['labels_for_reader']
model.train()
inputs = {'query_input_ids': batch['query_input_ids'].to(args.device),
'query_attention_mask': batch['query_attention_mask'].to(args.device),
'query_token_type_ids': batch['query_token_type_ids'].to(args.device),
'passage_rep': torch.from_numpy(passage_reps_for_retriever).to(args.device),
'retrieval_label': torch.from_numpy(labels_for_retriever).to(args.device)}
retriever_outputs = model.retriever(**inputs)
# model outputs are always tuple in transformers (see doc)
retriever_loss = retriever_outputs[0]
reader_batch = gen_reader_features(qids, question_texts, answer_texts, answer_starts,
pids_for_reader, passages_for_reader, labels_for_reader,
reader_tokenizer, args.reader_max_seq_length, is_training=True)
reader_batch = {k: v.to(args.device) for k, v in reader_batch.items()}
inputs = {'input_ids': reader_batch['input_ids'],
'attention_mask': reader_batch['input_mask'],
'token_type_ids': reader_batch['segment_ids'],
'start_positions': reader_batch['start_position'],
'end_positions': reader_batch['end_position'],
'retrieval_label': reader_batch['retrieval_label']}
reader_outputs = model.reader(**inputs)
reader_loss, qa_loss, rerank_loss = reader_outputs[0:3]
loss = retriever_loss + reader_loss
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
retriever_loss = retriever_loss.mean()
reader_loss = reader_loss.mean()
qa_loss = qa_loss.mean()
rerank_loss = rerank_loss.mean()
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
retriever_loss = retriever_loss / args.gradient_accumulation_steps
reader_loss = reader_loss / args.gradient_accumulation_steps
qa_loss = qa_loss / args.gradient_accumulation_steps
rerank_loss = rerank_loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
retriever_tr_loss += retriever_loss.item()
reader_tr_loss += reader_loss.item()
qa_tr_loss += qa_loss.item()
rerank_tr_loss += rerank_loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(
amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
# Only evaluate when single GPU otherwise metrics may not average well
if args.local_rank == -1 and args.evaluate_during_training:
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar(
'eval_{}'.format(key), value, global_step)
tb_writer.add_scalar(
'lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar(
'loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
tb_writer.add_scalar(
'retriever_loss', (retriever_tr_loss - retriever_logging_loss)/args.logging_steps, global_step)
tb_writer.add_scalar(
'reader_loss', (reader_tr_loss - reader_logging_loss)/args.logging_steps, global_step)
tb_writer.add_scalar(
'qa_loss', (qa_tr_loss - qa_logging_loss)/args.logging_steps, global_step)
tb_writer.add_scalar(
'rerank_loss', (rerank_tr_loss - rerank_logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
retriever_logging_loss = retriever_tr_loss
reader_logging_loss = reader_tr_loss
qa_logging_loss = qa_tr_loss
rerank_logging_loss = rerank_tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(
args.output_dir, 'checkpoint-{}'.format(global_step))
retriever_model_dir = os.path.join(output_dir, 'retriever')
reader_model_dir = os.path.join(output_dir, 'reader')
if not os.path.exists(retriever_model_dir):
os.makedirs(retriever_model_dir)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if not os.path.exists(reader_model_dir):
os.makedirs(reader_model_dir)
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(
model, 'module') else model
retriever_model_to_save = model_to_save.retriever
retriever_model_to_save.save_pretrained(
retriever_model_dir)
reader_model_to_save = model_to_save.reader
reader_model_to_save.save_pretrained(reader_model_dir)
torch.save(args, os.path.join(
output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
# In[5]:
def evaluate(args, model, retriever_tokenizer, reader_tokenizer, prefix=""):
if prefix == 'test':
eval_file = args.test_file
orig_eval_file = args.orig_test_file
else:
eval_file = args.dev_file
orig_eval_file = args.orig_dev_file
pytrec_eval_evaluator = evaluator
# dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
DatasetClass = RetrieverDataset
dataset = DatasetClass(eval_file, retriever_tokenizer,
args.load_small, args.history_num,
query_max_seq_length=args.retriever_query_max_seq_length,
is_pretraining=args.is_pretraining,
given_query=True,
given_passage=False,
include_first_for_retriever=args.include_first_for_retriever)
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
predict_dir = os.path.join(args.output_dir, 'predictions')
if not os.path.exists(predict_dir) and args.local_rank in [-1, 0]:
os.makedirs(predict_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
# eval_sampler = SequentialSampler(
# dataset) if args.local_rank == -1 else DistributedSampler(dataset)
eval_sampler = SequentialSampler(dataset)
eval_dataloader = DataLoader(
dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, num_workers=args.num_workers)
# multi-gpu evaluate
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# model.to(f'cuda:{model.device_ids[0]}')
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
retriever_run_dict, rarank_run_dict = {}, {}
examples, features = {}, {}
all_results = []
start_time = timeit.default_timer()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
# TODO casting to numpy and back to list seems inefficient
qids = np.asarray(batch['qid']).reshape(-1).tolist()
# print(qids)
question_texts = np.asarray(
batch['question_text']).reshape(-1).tolist()
answer_texts = np.asarray(
batch['answer_text']).reshape(-1).tolist()
answer_starts = np.asarray(
batch['answer_start']).reshape(-1).tolist()
query_reps = gen_query_reps(args, model, batch)
retrieval_results = retrieve(args, qids, qid_to_idx, query_reps,
passage_ids, passage_id_to_idx, passage_reps,
qrels, qrels_sparse_matrix,
gpu_index, include_positive_passage=False)
retriever_probs = retrieval_results['retriever_probs']
# print('retriever_probs before', retriever_probs)
pids_for_reader = retrieval_results['pids_for_reader']
passages_for_reader = retrieval_results['passages_for_reader']
labels_for_reader = retrieval_results['labels_for_reader']
reader_batch, batch_examples, batch_features = gen_reader_features(qids, question_texts, answer_texts,
answer_starts, pids_for_reader,
passages_for_reader, labels_for_reader,
reader_tokenizer,
args.reader_max_seq_length,
is_training=False)
example_ids = reader_batch['example_id']
# print('example_ids', example_ids)
examples.update(batch_examples)
features.update(batch_features)
reader_batch = {k: v.to(args.device)
for k, v in reader_batch.items() if k != 'example_id'}
with torch.no_grad():
inputs = {'input_ids': reader_batch['input_ids'],
'attention_mask': reader_batch['input_mask'],
'token_type_ids': reader_batch['segment_ids']}
outputs = model.reader(**inputs)
retriever_probs = retriever_probs.reshape(-1).tolist()
# print('retriever_probs after', retriever_probs)
for i, example_id in enumerate(example_ids):
result = RawResult(unique_id=example_id,
start_logits=to_list(outputs[0][i]),
end_logits=to_list(outputs[1][i]),
retrieval_logits=to_list(outputs[2][i]),
retriever_prob=retriever_probs[i])
all_results.append(result)
evalTime = timeit.default_timer() - start_time
logger.info(" Evaluation done in total %f secs (%f sec per example)",
evalTime, evalTime / len(dataset))
output_prediction_file = os.path.join(
predict_dir, "instance_predictions_{}.json".format(prefix))
output_nbest_file = os.path.join(
predict_dir, "instance_nbest_predictions_{}.json".format(prefix))
output_final_prediction_file = os.path.join(
predict_dir, "final_predictions_{}.json".format(prefix))
if args.version_2_with_negative:
output_null_log_odds_file = os.path.join(
predict_dir, "instance_null_odds_{}.json".format(prefix))
else:
output_null_log_odds_file = None
all_predictions = write_predictions(examples, features, all_results, args.n_best_size,
args.max_answer_length, args.do_lower_case, output_prediction_file,
output_nbest_file, output_null_log_odds_file, args.verbose_logging,
args.version_2_with_negative, args.null_score_diff_threshold)
write_final_predictions(all_predictions, output_final_prediction_file,
use_rerank_prob=args.use_rerank_prob,
use_retriever_prob=args.use_retriever_prob)
eval_metrics = quac_eval(
orig_eval_file, output_final_prediction_file)
rerank_metrics = get_retrieval_metrics(
pytrec_eval_evaluator, all_predictions, eval_retriever_probs=True)
eval_metrics.update(rerank_metrics)
metrics_file = os.path.join(
predict_dir, "metrics_{}.json".format(prefix))
with open(metrics_file, 'w') as fout:
json.dump(eval_metrics, fout)
return eval_metrics
# In[6]:
def gen_query_reps(args, model, batch):
model.eval()
batch = {k: v.to(args.device) for k, v in batch.items()
if k not in ['example_id', 'qid', 'question_text', 'answer_text', 'answer_start']}
with torch.no_grad():
inputs = {}
inputs['query_input_ids'] = batch['query_input_ids']
inputs['query_attention_mask'] = batch['query_attention_mask']
inputs['query_token_type_ids'] = batch['query_token_type_ids']
outputs = model.retriever(**inputs)
query_reps = outputs[0]
return query_reps
# In[7]:
def retrieve(args, qids, qid_to_idx, query_reps,
passage_ids, passage_id_to_idx, passage_reps,
qrels, qrels_sparse_matrix,
gpu_index, include_positive_passage=False):
query_reps = query_reps.detach().cpu().numpy()
D, I = gpu_index.search(query_reps, args.top_k_for_retriever)
pidx_for_retriever = np.copy(I)
qidx = [qid_to_idx[qid] for qid in qids]
qidx_expanded = np.expand_dims(qidx, axis=1)
qidx_expanded = np.repeat(qidx_expanded, args.top_k_for_retriever, axis=1)
labels_for_retriever = qrels_sparse_matrix[qidx_expanded, pidx_for_retriever].toarray()
# print('labels_for_retriever before', labels_for_retriever)
if include_positive_passage:
for i, (qid, labels_per_query) in enumerate(zip(qids, labels_for_retriever)):
has_positive = np.sum(labels_per_query)
if not has_positive:
positive_pid = list(qrels[qid].keys())[0]
positive_pidx = passage_id_to_idx[positive_pid]
pidx_for_retriever[i][-1] = positive_pidx
labels_for_retriever = qrels_sparse_matrix[qidx_expanded, pidx_for_retriever].toarray()
# print('labels_for_retriever after', labels_for_retriever)
assert np.sum(labels_for_retriever) >= len(labels_for_retriever)
pids_for_retriever = passage_ids[pidx_for_retriever]
passage_reps_for_retriever = passage_reps[pidx_for_retriever]
scores = D[:, :args.top_k_for_reader]
retriever_probs = sp.special.softmax(scores, axis=1)
pidx_for_reader = I[:, :args.top_k_for_reader]
# print('pidx_for_reader', pidx_for_reader)
# print('qids', qids)
# print('qidx', qidx)
qidx_expanded = np.expand_dims(qidx, axis=1)
qidx_expanded = np.repeat(qidx_expanded, args.top_k_for_reader, axis=1)
# print('qidx_expanded', qidx_expanded)
labels_for_reader = qrels_sparse_matrix[qidx_expanded, pidx_for_reader].toarray()
# print('labels_for_reader before', labels_for_reader)
# print('labels_for_reader before', labels_for_reader)
if include_positive_passage:
for i, (qid, labels_per_query) in enumerate(zip(qids, labels_for_reader)):
has_positive = np.sum(labels_per_query)
if not has_positive:
positive_pid = list(qrels[qid].keys())[0]
positive_pidx = passage_id_to_idx[positive_pid]
pidx_for_reader[i][-1] = positive_pidx
labels_for_reader = qrels_sparse_matrix[qidx_expanded, pidx_for_reader].toarray()
# print('labels_for_reader after', labels_for_reader)
assert np.sum(labels_for_reader) >= len(labels_for_reader)
# print('labels_for_reader after', labels_for_reader)
pids_for_reader = passage_ids[pidx_for_reader]
# print('pids_for_reader', pids_for_reader)
passages_for_reader = get_passages(pidx_for_reader, args)
# we do not need to modify scores and probs matrices because they will only be
# needed at evaluation, where include_positive_passage will be false
return {'qidx': qidx,
'pidx_for_retriever': pidx_for_retriever,
'pids_for_retriever': pids_for_retriever,
'passage_reps_for_retriever': passage_reps_for_retriever,
'labels_for_retriever': labels_for_retriever,
'retriever_probs': retriever_probs,
'pidx_for_reader': pidx_for_reader,
'pids_for_reader': pids_for_reader,
'passages_for_reader': passages_for_reader,
'labels_for_reader': labels_for_reader}
# In[8]:
def get_passage(i, args):
line = linecache.getline(args.blocks_path, i + 1)
line = json.loads(line.strip())
return line['text']
get_passages = np.vectorize(get_passage)
def load_pickle(fname, logger):
logger.info(f'loading pickle file: {fname}')
if not os.path.isfile(fname):
logger.error(f'Failed to open {fname}, file not found')
# Fix reading large pickle files on MAC systems
if platform.system() == "Darwin":
bytes_in = bytearray(0)
max_bytes = 2 ** 31 - 1
input_size = os.path.getsize(args.passage_ids_path)
with open(args.passage_ids_path, 'rb') as f_in:
for _ in range(0, input_size, max_bytes):
bytes_in += f_in.read(max_bytes)
return pkl.loads(bytes_in)
with open(fname, 'rb') as handle:
return joblib.load(handle)
def load_json(fname, logger):
logger.info(f'loading json file {fname}')
if not os.path.isfile(fname):
logger.error(f'Failed to open {fname}, file not found')
with open(args.qrels) as handle:
return json.load(handle)
#TODO combine with resource manager
def construct_faiss_index(passage_reps, proj_size, no_cuda, logger):
logger.info('constructing passage faiss_index')
index = faiss.IndexFlatIP(proj_size)
index.add(passage_reps)
if torch.cuda.is_available() and not no_cuda:
faiss_res = faiss.StandardGpuResources()
if torch.cuda.device_count() > 1:
# run faiss on last gpu if more than 1 is available
gpuId = torch.cuda.device_count() - 1
index = faiss.index_cpu_to_gpu(faiss_res, gpuId, index)
else:
# otherwise use the only available one
index = faiss.index_cpu_to_gpu(faiss_res, 0, index)
return index
def create_inv_passage_id_index(passage_ids):
# TODO this seems like a slow way to do this
passage_id_to_idx = {}
for i, pid in enumerate(passage_ids):
passage_id_to_idx[pid] = i
return passage_id_to_idx
# TODO rename, also returns inverse quid index
def create_qrel_sparse_matrix(qrels, passage_id_to_idx):
# TODO no loops?
qrels_data, qrels_row_idx, qrels_col_idx = [], [], []
qid_to_idx = {}
for i, (qid, v) in enumerate(qrels.items()):
qid_to_idx[qid] = i
for pid in v.keys():
qrels_data.append(1)
qrels_row_idx.append(i)
qrels_col_idx.append(passage_id_to_idx[pid])
qrels_sparse_matrix = sp.sparse.csr_matrix(
(qrels_data, (qrels_row_idx, qrels_col_idx)))
return qrels_sparse_matrix, qid_to_idx
#####################
# CODE START
####################
logger = logging.getLogger(__name__)
ALL_MODELS = list(BertConfig.pretrained_config_archive_map.keys())
MODEL_CLASSES = {
'reader': (BertConfig, BertForOrconvqaGlobal, BertTokenizer),
'retriever': (AlbertConfig, AlbertForRetrieverOnlyPositivePassage, AlbertTokenizer),
}
argparser = StdArgparser()
args = argparser.get_parsed()
# TODO fix everything going through single output dir (better of with multiple subfiles per run unless continue flag is set)
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# TODO DONT OVERWRITE ARGUMENTS
args.retriever_tokenizer_dir = os.path.join(args.output_dir, 'retriever')
args.reader_tokenizer_dir = os.path.join(args.output_dir, 'reader')
# Setup distant debugging if needed
# TODO remove? Seems outside of the scope of this project
# if args.server_ip and args.server_port:
# # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
# import ptvsd
# print("Waiting for debugger attach")
# ptvsd.enable_attach(
# address=(args.server_ip, args.server_port), redirect_output=True)
# ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
# we now only support joint training on a single card
# we will request two cards, one for torch and the other one for faiss
# TODO create general resource manager class to assign GPU space, this code seems pretty bad (P.S. look at fais index creation)
if args.local_rank == -1 or args.no_cuda:
device = torch.device(
"cuda:0" if torch.cuda.is_available() and not args.no_cuda else "cpu")
# args.n_gpu = torch.cuda.device_count()
args.n_gpu = 1
# torch.cuda.set_device(0)
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
model = Pipeline()
args.retriever_model_type = args.retriever_model_type.lower()
retriever_config_class, retriever_model_class, retriever_tokenizer_class = MODEL_CLASSES['retriever']
retriever_config = retriever_config_class.from_pretrained(args.retrieve_checkpoint)
# load pretrained retriever
retriever_tokenizer = retriever_tokenizer_class.from_pretrained(args.retrieve_tokenizer_dir)
retriever_model = retriever_model_class.from_pretrained(args.retrieve_checkpoint, force_download=True)
model.retriever = retriever_model
# do not need and do not tune passage encoder
model.retriever.passage_encoder = None
model.retriever.passage_proj = None
args.reader_model_type = args.reader_model_type.lower()
reader_config_class, reader_model_class, reader_tokenizer_class = MODEL_CLASSES['reader']
reader_config = reader_config_class.from_pretrained(args.reader_config_name if args.reader_config_name else args.reader_model_name_or_path,
cache_dir=args.reader_cache_dir if args.reader_cache_dir else None)
reader_config.num_qa_labels = 2
# this not used for BertForOrconvqaGlobal
reader_config.num_retrieval_labels = 2
reader_config.qa_loss_factor = args.qa_loss_factor
reader_config.retrieval_loss_factor = args.retrieval_loss_factor
reader_tokenizer = reader_tokenizer_class.from_pretrained(args.reader_tokenizer_name if args.reader_tokenizer_name else args.reader_model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.reader_cache_dir if args.reader_cache_dir else None)
reader_model = reader_model_class.from_pretrained(args.reader_model_name_or_path,
from_tf=bool(
'.ckpt' in args.reader_model_name_or_path),
config=reader_config,
cache_dir=args.reader_cache_dir if args.reader_cache_dir else None)
model.reader = reader_model
if args.local_rank == 0:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
# TODO What? assign again? Isnt GPU space already assigned?
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
# Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
# remove the need for this code, but it is still valid.
# TODO do we need this?
if args.fp16:
try:
import apex
apex.amp.register_half_function(torch, 'einsum')
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
passage_ids = load_pickle(args.passage_ids_path, logger)
passage_reps = load_pickle(args.passage_reps_path, logger)
#TODO change this var name, not allways a GPU index, can also be CPU based faiss index
gpu_index = construct_faiss_index(passage_reps, args.proj_size, args.no_cuda, logger)
qrels = load_json(args.qrels, logger)
passage_id_to_idx = create_inv_passage_id_index(passage_ids)
qrels_sparse_matrix, qid_to_idx = create_qrel_sparse_matrix(qrels, passage_id_to_idx)
evaluator = pytrec_eval.RelevanceEvaluator(qrels, {'recip_rank', 'recall'})
# In[10]:
# Training
if args.do_train:
DatasetClass = RetrieverDataset
train_dataset = DatasetClass(args.train_file, retriever_tokenizer,
args.load_small, args.history_num,
query_max_seq_length=args.retriever_query_max_seq_length,
is_pretraining=args.is_pretraining,
given_query=True,
given_passage=False,
include_first_for_retriever=args.include_first_for_retriever)
global_step, tr_loss = train(
args, train_dataset, model, retriever_tokenizer, reader_tokenizer)
logger.info(" global_step = %s, average loss = %s",
global_step, tr_loss)
# Save the trained model and the tokenizer
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
# TODO should be easy to move to own function
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
if not os.path.exists(args.retriever_tokenizer_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.retriever_tokenizer_dir)
if not os.path.exists(args.reader_tokenizer_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.reader_tokenizer_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(model, 'module') else model
final_checkpoint_output_dir = os.path.join(
args.output_dir, 'checkpoint-{}'.format(global_step))
# TODO fine, but maybe move to function?
final_retriever_model_dir = os.path.join(
final_checkpoint_output_dir, 'retriever')
final_reader_model_dir = os.path.join(
final_checkpoint_output_dir, 'reader')
# TODO should be easy to move to own function
if not os.path.exists(final_checkpoint_output_dir):
os.makedirs(final_checkpoint_output_dir)
if not os.path.exists(final_retriever_model_dir):
os.makedirs(final_retriever_model_dir)
if not os.path.exists(final_reader_model_dir):
os.makedirs(final_reader_model_dir)
# save retriever
retriever_model_to_save = model_to_save.retriever
retriever_model_to_save.save_pretrained(final_retriever_model_dir)
#save reader
reader_model_to_save = model_to_save.reader
reader_model_to_save.save_pretrained(final_reader_model_dir)
# save reader and retriever tokenizers
# TODO dont use args - think about file structure (saving over input seems wrong)
retriever_tokenizer.save_pretrained(args.retriever_tokenizer_dir)
reader_tokenizer.save_pretrained(args.reader_tokenizer_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(
final_checkpoint_output_dir, 'training_args.bin'))
# TODO didnt we just save these?
# Load a trained model and vocabulary that you have fine-tuned
model = Pipeline()
model.retriever = retriever_model_class.from_pretrained(
final_retriever_model_dir, force_download=True)
model.retriever.passage_encoder = None
model.retriever.passage_proj = None
model.reader = reader_model_class.from_pretrained(
final_reader_model_dir, force_download=True)
retriever_tokenizer = retriever_tokenizer_class.from_pretrained(
args.retriever_tokenizer_dir, do_lower_case=args.do_lower_case)
reader_tokenizer = reader_tokenizer_class.from_pretrained(
args.reader_tokenizer_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
# In[11]:
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
results = {}
max_f1 = 0.0
best_metrics = {}
if args.do_eval and args.local_rank in [-1, 0]:
retriever_tokenizer = retriever_tokenizer_class.from_pretrained(
args.retriever_tokenizer_dir, do_lower_case=args.do_lower_case)
reader_tokenizer = reader_tokenizer_class.from_pretrained(
args.reader_tokenizer_dir, do_lower_case=args.do_lower_case)
tb_writer = SummaryWriter(os.path.join(args.output_dir, 'logs'))
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = sorted(list(os.path.dirname(os.path.dirname(c)) for c in
glob.glob(args.output_dir + '/*/retriever/' + WEIGHTS_NAME, recursive=False)))
# logging.getLogger("transformers.modeling_utils").setLevel(
# logging.WARN) # Reduce model loading logs
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
# Reload the model
global_step = checkpoint.split(
'-')[-1] if len(checkpoint) > 1 else ""
print(global_step, 'global_step')
model = Pipeline()
model.retriever = retriever_model_class.from_pretrained(
os.path.join(checkpoint, 'retriever'), force_download=True)
model.retriever.passage_encoder = None
model.retriever.passage_proj = None
model.reader = reader_model_class.from_pretrained(
os.path.join(checkpoint, 'reader'), force_download=True)
model.to(args.device)
# Evaluate
result = evaluate(args, model, retriever_tokenizer,
reader_tokenizer, prefix=global_step)
if result['f1'] > max_f1:
max_f1 = result['f1']
best_metrics = copy(result)
best_metrics['global_step'] = global_step
for key, value in result.items():
tb_writer.add_scalar(
'eval_{}'.format(key), value, global_step)
result = dict((k + ('_{}'.format(global_step) if global_step else ''), v)
for k, v in result.items())
results.update(result)
best_metrics_file = os.path.join(
args.output_dir, 'predictions', 'best_metrics.json')
with open(best_metrics_file, 'w') as fout:
json.dump(best_metrics, fout)
all_results_file = os.path.join(
args.output_dir, 'predictions', 'all_results.json')
with open(all_results_file, 'w') as fout:
json.dump(results, fout)
logger.info("Results: {}".format(results))
logger.info("best metrics: {}".format(best_metrics))
# In[12]:
if args.do_test and args.local_rank in [-1, 0]:
# TODO actual fix
args.retriever_tokenizer_dir = "./data/pipeline_checkpoint/retriever"
args.reader_tokenizer_dir = "./data/pipeline_checkpoint/reader"
if args.do_eval:
best_global_step = best_metrics['global_step']
else:
best_global_step = args.best_global_step
retriever_tokenizer = retriever_tokenizer_class.from_pretrained(
args.retriever_tokenizer_dir, do_lower_case=args.do_lower_case)
reader_tokenizer = reader_tokenizer_class.from_pretrained(
args.reader_tokenizer_dir, do_lower_case=args.do_lower_case)
best_checkpoint = os.path.join(
args.output_dir, 'checkpoint-{}'.format(best_global_step))
logger.info("Test the best checkpoint: %s", best_checkpoint)
#TODO actual fix
best_checkpoint = './data/pipeline_checkpoint/checkpoint-45000'
model = Pipeline()
model.retriever = retriever_model_class.from_pretrained(
os.path.join(best_checkpoint, 'retriever'), force_download=True)
model.retriever.passage_encoder = None
model.retriever.passage_proj = None
model.reader = reader_model_class.from_pretrained(
os.path.join(best_checkpoint, 'reader'), force_download=True)
model.to(args.device)
# Evaluate
result = evaluate(args, model, retriever_tokenizer,
reader_tokenizer, prefix='test')
test_metrics_file = os.path.join(
args.output_dir, 'predictions', 'test_metrics.json')
with open(test_metrics_file, 'w') as fout:
json.dump(result, fout)
logger.info("Test Result: {}".format(result))
# In[ ]: