forked from prdwb/orconvqa-release
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstdargparser.py
205 lines (192 loc) · 15.7 KB
/
stdargparser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import argparse
class StdArgparser:
def __init__(self):
self.parser = argparse.ArgumentParser()
self._register_std_args()
def _register_std_args(self):
self.parser.add_argument("--train_file", default='/mnt/scratch/chenqu/orconvqa/v5/quac_canard/preprocessed/train.txt',
type=str, required=False,
help="open retrieval quac json for training. ")
self.parser.add_argument("--dev_file", default='/mnt/scratch/chenqu/orconvqa/v5/quac_canard/preprocessed/dev.txt',
type=str, required=False,
help="open retrieval quac json for predictions.")
self.parser.add_argument("--test_file", default='/mnt/scratch/chenqu/orconvqa/v5/quac_canard/preprocessed/test.txt',
type=str, required=False,
help="open retrieval quac json for predictions.")
self.parser.add_argument("--orig_dev_file", default='/mnt/scratch/chenqu/orconvqa/v5/quac_canard/quac/dev.txt',
type=str, required=False,
help="open retrieval quac json for predictions.")
self.parser.add_argument("--orig_test_file", default='/mnt/scratch/chenqu/orconvqa/v5/quac_canard/quac/test.txt',
type=str, required=False,
help="original quac json for evaluation.")
self.parser.add_argument("--qrels", default='/mnt/scratch/chenqu/orconvqa/v5/retrieval/qrels.txt', type=str, required=False,
help="qrels to evaluate open retrieval")
# self.parser.add_argument("--blocks_path", default='/mnt/scratch/chenqu/orconvqa/v3/all/all_blocks.txt', type=str, required=False,
# help="all blocks text")
self.parser.add_argument("--blocks_path", default='/mnt/scratch/chenqu/orconvqa/v3/all/all_blocks.txt', type=str, required=False,
help="all blocks text")
self.parser.add_argument("--passage_reps_path", default='/mnt/scratch/chenqu/orconvqa/v5/passage_reps/combined/passage_reps.pkl',
type=str, required=False, help="passage representations")
self.parser.add_argument("--passage_ids_path", default='/mnt/scratch/chenqu/orconvqa/v5/passage_reps/combined/passage_ids.pkl',
type=str, required=False, help="passage ids")
self.parser.add_argument("--output_dir", default='/mnt/scratch/chenqu/orconvqa_output/release_test', type=str, required=False,
help="The output directory where the model checkpoints and predictions will be written.")
self.parser.add_argument("--load_small", default=True, type=self.str2bool, required=False,
help="whether to load just a small portion of data during development")
self.parser.add_argument("--num_workers", default=2, type=int, required=False,
help="number of workers for dataloader")
self.parser.add_argument("--global_mode", default=True, type=self.str2bool, required=False,
help="maxmize the prob of the true answer given all passages")
self.parser.add_argument("--history_num", default=1, type=int, required=False,
help="number of history turns to use")
self.parser.add_argument("--prepend_history_questions", default=True, type=self.str2bool, required=False,
help="whether to prepend history questions to the current question")
self.parser.add_argument("--prepend_history_answers", default=False, type=self.str2bool, required=False,
help="whether to prepend history answers to the current question")
self.parser.add_argument("--do_train", default=True, type=self.str2bool,
help="Whether to run training.")
self.parser.add_argument("--do_eval", default=True, type=self.str2bool,
help="Whether to run eval on the dev set.")
self.parser.add_argument("--do_test", default=True, type=self.str2bool,
help="Whether to run eval on the test set.")
self.parser.add_argument("--best_global_step", default=40, type=int, required=False,
help="used when only do_test")
self.parser.add_argument("--evaluate_during_training", default=False, type=self.str2bool,
help="Rul evaluation during training at each logging step.")
self.parser.add_argument("--do_lower_case", default=True, type=self.str2bool,
help="Set this flag if you are using an uncased model.")
self.parser.add_argument("--per_gpu_train_batch_size", default=1, type=int,
help="Batch size per GPU/CPU for training.")
self.parser.add_argument("--per_gpu_eval_batch_size", default=2, type=int,
help="Batch size per GPU/CPU for evaluation.")
self.parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
self.parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
self.parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight decay if we apply some.")
self.parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
self.parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
self.parser.add_argument("--num_train_epochs", default=1.0, type=float,
help="Total number of training epochs to perform.")
self.parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
self.parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
self.parser.add_argument("--warmup_portion", default=0.1, type=float,
help="Linear warmup over warmup_steps (=t_total * warmup_portion). override warmup_steps ")
self.parser.add_argument("--verbose_logging", action='store_true',
help="If true, all of the warnings related to data processing will be printed. "
"A number of warnings are expected for a normal SQuAD evaluation.")
self.parser.add_argument('--logging_steps', type=int, default=1,
help="Log every X updates steps.")
self.parser.add_argument('--save_steps', type=int, default=20,
help="Save checkpoint every X updates steps.")
self.parser.add_argument("--eval_all_checkpoints", default=True, type=self.str2bool,
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
self.parser.add_argument("--no_cuda", default=False, type=self.str2bool,
help="Whether not to use CUDA when available")
self.parser.add_argument('--overwrite_output_dir', default=True, type=self.str2bool,
help="Overwrite the content of the output directory")
self.parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
self.parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
self.parser.add_argument("--local_rank", type=int, default=-1,
help="local_rank for distributed training on gpus")
self.parser.add_argument('--fp16', default=False, type=self.str2bool,
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
self.parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
self.parser.add_argument('--server_ip', type=str, default='',
help="Can be used for distant debugging.")
self.parser.add_argument('--server_port', type=str, default='',
help="Can be used for distant debugging.")
# retriever arguments
self.parser.add_argument("--retriever_config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
self.parser.add_argument("--retriever_model_type", default='albert', type=str, required=False,
help="retriever model type")
self.parser.add_argument("--retriever_model_name_or_path", default='albert-base-v1', type=str, required=False,
help="retriever model name")
self.parser.add_argument("--retriever_tokenizer_name", default="albert-base-v1", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
self.parser.add_argument("--retriever_cache_dir", default="/mnt/scratch/chenqu/huggingface_cache/albert_v1/", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
self.parser.add_argument("--retrieve_checkpoint",
default='/mnt/scratch/chenqu/orconvqa_output/retriever_33/checkpoint-5917', type=str,
help="generate query/passage representations with this checkpoint")
self.parser.add_argument("--retrieve_tokenizer_dir",
default='/mnt/scratch/chenqu/orconvqa_output/retriever_33/', type=str,
help="dir that contains tokenizer files")
self.parser.add_argument("--given_query", default=True, type=self.str2bool,
help="Whether query is given.")
self.parser.add_argument("--given_passage", default=False, type=self.str2bool,
help="Whether passage is given. Passages are not given when jointly train")
self.parser.add_argument("--is_pretraining", default=False, type=self.str2bool,
help="Whether is pretraining. We fine tune the query encoder in retriever")
self.parser.add_argument("--include_first_for_retriever", default=True, type=self.str2bool,
help="include the first question in a dialog in addition to history_num for retriever (not reader)")
# self.parser.add_argument("--only_positive_passage", default=True, type=self.str2bool,
# help="we only pass the positive passages, the rest of the passges in the batch are considered as negatives")
self.parser.add_argument("--retriever_query_max_seq_length", default=128, type=int,
help="The maximum input sequence length of query.")
self.parser.add_argument("--retriever_passage_max_seq_length", default=384, type=int,
help="The maximum input sequence length of passage (384 + [CLS] + [SEP]).")
self.parser.add_argument("--proj_size", default=128, type=int,
help="The size of the query/passage rep after projection of [CLS] rep.")
self.parser.add_argument("--top_k_for_retriever", default=100, type=int,
help="retrieve top k passages for a query, these passages will be used to update the query encoder")
self.parser.add_argument("--use_retriever_prob", default=True, type=self.str2bool,
help="include albert retriever probs in final answer ranking")
# reader arguments
self.parser.add_argument("--reader_config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
self.parser.add_argument("--reader_model_name_or_path", default='bert-base-uncased', type=str, required=False,
help="reader model name")
self.parser.add_argument("--reader_model_type", default='bert', type=str, required=False,
help="reader model type")
self.parser.add_argument("--reader_tokenizer_name", default="bert-base-uncased", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
self.parser.add_argument("--reader_cache_dir", default="/mnt/scratch/chenqu/huggingface_cache/", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
self.parser.add_argument("--reader_max_seq_length", default=512, type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.")
self.parser.add_argument("--doc_stride", default=384, type=int,
help="When splitting up a long document into chunks, how much stride to take between chunks.")
self.parser.add_argument('--version_2_with_negative', default=True, type=self.str2bool, required=False,
help='If true, the SQuAD examples contain some that do not have an answer.')
self.parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null.")
self.parser.add_argument("--reader_max_query_length", default=125, type=int,
help="The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length.")
self.parser.add_argument("--n_best_size", default=20, type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
self.parser.add_argument("--max_answer_length", default=40, type=int,
help="The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another.")
self.parser.add_argument("--qa_loss_factor", default=1.0, type=float,
help="total_loss = qa_loss_factor * qa_loss + retrieval_loss_factor * retrieval_loss")
self.parser.add_argument("--retrieval_loss_factor", default=1.0, type=float,
help="total_loss = qa_loss_factor * qa_loss + retrieval_loss_factor * retrieval_loss")
self.parser.add_argument("--top_k_for_reader", default=5, type=int,
help="update the reader with top k passages")
self.parser.add_argument("--use_rerank_prob", default=True, type=self.str2bool,
help="include rerank probs in final answer ranking")
def str2bool(self, v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_parsed(self):
args, unknown = self.parser.parse_known_args()
return args