-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_train.py
637 lines (494 loc) · 21.1 KB
/
run_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
import os
import math
import argparse
import json
import torch
import torch.utils.tensorboard
from torch.utils.data import DataLoader
from torch.nn.utils import clip_grad_norm_
from tqdm.auto import tqdm
from utils.misc import *
from trainers.scorp import *
from utils.dataset import *
from torch.optim.lr_scheduler import LambdaLR
import trimesh
import numpy as np
import pandas as pd
import itertools
from utils.misc import *
def make_directory(sdir):
if not os.path.exists(sdir):
os.makedirs(sdir)
def write_particles(particle_dir, names, particle_list):
output_file = []
for n,p in zip(names, particle_list):
n = n.split(".")[0].split("/")[-1] + ".particles"
# print(n)
p = p.detach().cpu().numpy()
np.savetxt(particle_dir + n, np.reshape(p,(-1,3)))
output_file.append(particle_dir + n)
return output_file
def calculate_point_to_mesh_distance(m,p):
mesh = trimesh.load(m)
points = np.loadtxt(p)
c = trimesh.proximity.ProximityQuery(mesh)
p2mDist = c.signed_distance(points)
return p2mDist
torch.cuda.empty_cache()
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default="configs/liver.json")
args = parser.parse_args()
with open(args.config, 'rt') as f:
t_args = argparse.Namespace()
t_args.__dict__.update(json.load(f))
args = parser.parse_args(namespace=t_args)
print(args)
seed_all(args.seed)
if args.logging:
log_dir = get_new_log_dir(args.log_root, prefix='SCorP', postfix='_' + args.tag if args.tag is not None else '')
logger = get_logger('train', log_dir)
writer = torch.utils.tensorboard.SummaryWriter(log_dir)
ckpt_mgr = CheckpointManager(log_dir)
log_hyperparams(writer, args)
else:
logger = get_logger('train', None)
writer = BlackHole()
ckpt_mgr = BlackHole()
logger.info(args)
train_dset = CommonDataset(args, partition='train')
val_dset = CommonDataset(args, partition ='val')
train_iter = DataLoader(
train_dset,
batch_size=args.train_batch_size,
num_workers=8,
shuffle= True
)
val_iter = DataLoader(
val_dset,
batch_size=args.val_batch_size,
num_workers=8,
drop_last=True,
shuffle = True
)
template = np.loadtxt(args.data_dir + "/"+args.template_type)
template = torch.from_numpy(template).type(torch.float)
if(args.scale_mode==None):
shift = torch.zeros((1,3))
scale = torch.ones((1,1))
else:
shift = template.mean(dim=0).reshape(1, 3)
scale = template.flatten().std().reshape(1, 1)
template = (template - shift) / scale
args.input_x_T = template
args.img_dims = train_iter.dataset.input_images[0].shape[1:]
# Model
logger.info('Building model...')
model = SCorP(args)
model.set_template(args.input_x_T)
logger.info(repr(model))
# Define your model optimizer choices
optimizer_choices = {
'adam': torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-4),
'adamw': torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-4),
'sgd': torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=1e-4),
}
def eval():
save_dir = log_dir + "/results/"
make_directory(save_dir)
test_logger = get_logger('test', save_dir)
for k, v in vars(args).items():
test_logger.info('[ARGS::%s] %s' % (k, repr(v)))
test_logger.info('Loading model...')
args.ckpt_path = log_dir + "/ckpt_best_.pt"
checkpoint = torch.load(args.ckpt_path,map_location=args.device)
model.load_state_dict(checkpoint['state_dict'])
model.set_template(args.input_x_T)
for partition in ['train', 'test', 'val']:
test_dset = CommonDataset(args, partition = partition)
test_iter = DataLoader(test_dset,
batch_size=1,
num_workers=8,
drop_last=True
)
correspondences_pred_dir = save_dir + partition + "_correspondences_pred/"
make_directory(correspondences_pred_dir)
names = []
corr_p2mDist = []
corr_particle_list = []
corr_chamfer_dist_l1 = []
corr_chamfer_dist_l2 = []
model.eval()
for data in test_iter:
vertices = data['pointcloud'].to(args.device)
n = data['name']
with torch.no_grad():
correspondences_pred = model.predict(images=data['image'].to(args.device))
label = data['true_pointcloud'].to(args.device)
# Predicted correspondence Chamfer distance
val_batch_size = vertices.shape[0]
cd_l1,_ = pytorch3d.loss.chamfer_distance(label.reshape((args.val_batch_size,-1,3)), correspondences_pred.reshape((args.val_batch_size,-1,3)),point_reduction='mean', batch_reduction="mean", norm=1)
cd_l2,_ = pytorch3d.loss.chamfer_distance(label.reshape((args.val_batch_size,-1,3)), correspondences_pred.reshape((args.val_batch_size,-1,3)),point_reduction='mean', batch_reduction="mean", norm=2)
corr_chamfer_dist_l1.append(cd_l1.detach().cpu().numpy())
corr_chamfer_dist_l2.append(cd_l2.detach().cpu().numpy())
corr_particle = write_particles(correspondences_pred_dir, n, correspondences_pred)
corr_particle_list.append(corr_particle)
#point to surface distance
for m,p in zip(n, corr_particle):
m = args.data_dir + partition + "/meshes/" + m
names.append(m)
p2m = calculate_point_to_mesh_distance(m,p)
corr_p2mDist.append(p2m)
corr_chamfer_dist_l1 = np.array(corr_chamfer_dist_l1).flatten()
corr_chamfer_dist_l2 = np.array(corr_chamfer_dist_l2).flatten()
corr_p2mDist = np.array(corr_p2mDist)
corr_p2mDist_mean = np.mean(corr_p2mDist,axis=1)
worst_index, best_index = np.argmax(corr_p2mDist_mean), np.argmin(corr_p2mDist_mean)
median_index = np.argsort(corr_p2mDist_mean)[len(corr_p2mDist_mean)//2]
labels = ['worst', 'median', 'best']
indices = [worst_index, median_index, best_index]
corr_particle_list = list(itertools.chain.from_iterable(corr_particle_list))
files_dict = {'worst':[corr_particle_list[worst_index],worst_index], 'median':[corr_particle_list[median_index],median_index], 'best':[corr_particle_list[best_index],best_index]}
pd.DataFrame.from_dict(files_dict).to_csv(f'{save_dir}/{partition}_p2m_file_list.csv', index= False)
project_dict = {'meshes':names, 'corr_particles':corr_particle_list}
print(f'meshes: {len(names)}, corr_particles : {len(corr_particle_list)} ')
pd.DataFrame.from_dict(project_dict).to_csv(save_dir + partition + "_file_lists.csv",index=False)
np.save(f'{save_dir}/{partition}_cd_l1.npy', corr_chamfer_dist_l1)
np.save(f'{save_dir}/{partition}_cd_l2.npy', corr_chamfer_dist_l2)
np.save(f'{save_dir}/{partition}_p2mdist.npy', corr_p2mDist)
test_logger.info(f'Partition: {partition}')
test_logger.info('Correspondence Chamfer distance L1: %.6f +/- %.6f ' % (np.mean(corr_chamfer_dist_l1), np.std(corr_chamfer_dist_l1)))
test_logger.info('Correspondence Chamfer distance L2: %.6f +/- %.6f ' % (np.mean(corr_chamfer_dist_l2), np.std(corr_chamfer_dist_l2)))
test_logger.info('Correspondence point to mesh distance: %.6f +/- %.6f ' % (np.mean(corr_p2mDist), np.std(corr_p2mDist)))
def test(epoch, image_inference = True):
corr_chamfer_dist_l1 = []
corr_chamfer_dist_l2 = []
for data in val_iter:
noisy_vertices = data['pointcloud']
images = data['image']
n = data['name']
idx = data['idx']
with torch.no_grad():
if (image_inference):
correspondences_pred = model.predict(images = images.to(args.device))
else:
correspondences_pred = model.predict(vertices = noisy_vertices.to(args.device), idx = idx.to(args.device))
if(args.noise_level>0):
label = data['true_pointcloud'].to(args.device)
else:
label = noisy_vertices.to(args.device)
# Predicted correspondence Chamfer distance
val_batch_size = label.shape[0]
cd_l1,_ = pytorch3d.loss.chamfer_distance(label.reshape((args.val_batch_size,-1,3)), correspondences_pred.reshape((args.val_batch_size,-1,3)),point_reduction='mean', batch_reduction='mean', norm=1)
cd_l2,_ = pytorch3d.loss.chamfer_distance(label.reshape((args.val_batch_size,-1,3)), correspondences_pred.reshape((args.val_batch_size,-1,3)),point_reduction='mean', batch_reduction='mean', norm=2)
corr_chamfer_dist_l1.append(cd_l1.detach().item())
corr_chamfer_dist_l2.append(cd_l2.detach().item())
corr_chamfer_dist_l1 = np.array(corr_chamfer_dist_l1)
corr_chamfer_dist_l2 = np.array(corr_chamfer_dist_l2)
return np.mean(corr_chamfer_dist_l1), np.mean(corr_chamfer_dist_l2)
batch_iter = int(train_iter.__len__())
# ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
#------------------------- Autoencoder training ------------------------------------------------------------------------------------------------------------------------------#
# ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
for param in model.dgcnn.parameters():
param.requires_grad = True
for param in model.imnet.parameters():
param.requires_grad = True
for param in model.encoder.parameters():
param.requires_grad = False
# Main loop
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
logger.info('Start training...')
best_val_cd = float('inf')
best_template = None
try:
early_stopping_counter = 0
it = 0
for epoch in range(args.epochs_ae):
model.train()
for batch in train_iter:
vertices = batch['pointcloud'].to(args.device)
faces = batch['faces'].to(args.device)
idx = batch['idx'].to(args.device)
# Reset grad and model state
optimizer.zero_grad()
label = batch['true_pointcloud'].to(args.device)
loss, loss_cd, loss_dgcnn = model.get_loss_mesh(vertices, label, faces, idx)
# Backward and optimize
loss.backward()
optimizer.step()
if (it % batch_iter == 0):
logger.info('[Train] Epoch %04d | Iter %04d | Loss %.6f | Loss CD %.4f | Loss DGCNN %.4f' \
% (epoch, it, loss.mean().item(), loss_cd.mean().item(), loss_dgcnn.mean().item()))
it = it +1
#write outputs
writer.add_scalar('train/loss_cd', loss_cd.mean().item(), it)
writer.add_scalar('train/loss_dgcnn', loss_dgcnn.mean().item(), it)
writer.add_scalar('train/loss', loss, it)
writer.flush()
# validation loop to plot predicted correspondences and sampled template
if epoch % args.model_save_freq == 0 or epoch == args.epochs_ae:
if(args.scheduler!=None):
opt_states = {
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'args': args,
'current_epoch': epoch
}
else:
opt_states = {
'optimizer': optimizer.state_dict(),
'args': args,
'current_epoch': epoch
}
# save with the name latest.pt so that you don't waste memory saving all the intermediate models
ckpt_mgr.save(model, args, 0, others=opt_states, step="latest")
if(epoch == args.epochs_ae):
filename = log_dir + "/template_" + str(epoch) + ".particles"
np.savetxt(filename, model.input_x_T)
# valiadation for getting the best model and early stopping check
if epoch % args.val_freq == 0 or epoch == args.epochs:
val_loss_cd_l1, val_loss_cd_l2 = test(epoch, image_inference = False)
# Early stopping
logger.info('[Validation] Epoch %04d | Loss CD L1 %.4f | Loss CD L2 %.4f ' \
% (epoch, val_loss_cd_l1, val_loss_cd_l2))
if (args.chamfer_dist == 'L1'):
val_loss = val_loss_cd_l1
else:
val_loss = val_loss_cd_l2
# check for the best model
if val_loss < best_val_cd:
best_val_cd = val_loss
early_stopping_counter = 0
if(args.scheduler!=None):
opt_states = {
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'args': args,
}
else:
opt_states = {
'optimizer': optimizer.state_dict(),
'args': args,
}
ckpt_mgr.save(model, args, 0, others=opt_states, step='best_ae')
filename = log_dir + "/best_template.particles"
np.savetxt(filename, model.input_x_T)
else:
early_stopping_counter +=1
if early_stopping_counter >= args.early_stopping_patience:
logger.info("Early stopping! No improvement in validation loss.")
# Epoch when Mesh branch stopped training
args.epochs_ae = epoch
break
except KeyboardInterrupt:
logger.info('Terminating...')
# load the best autoencoder model from current run
ckpt_path = log_dir + "/ckpt_best_ae_.pt"
checkpoint = torch.load(ckpt_path,map_location=args.device)
model.load_state_dict(checkpoint['state_dict'])
best_template = np.loadtxt(log_dir + "/best_template.particles")
best_template = torch.from_numpy(best_template).type(torch.float)
model.set_template(best_template)
for param in model.dgcnn.parameters():
param.requires_grad = False
for param in model.imnet.parameters():
param.requires_grad = False
for param in model.encoder.parameters():
param.requires_grad = True
# ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
#------------------------- Feature Alignment training ------------------------------------------------------------------------------------------------------------------------------#
# ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
# Main loop
logger.info('Start feature alignment training...')
best_val_loss = float('inf')
best_template = None
try:
early_stopping_counter = 0
for epoch in range(args.epochs_tf):
# torch.cuda.empty_cache()
model.train()
for batch in train_iter:
vertices = batch['pointcloud'].to(args.device)
images = batch['image'].to(args.device)
idx = batch['idx'].to(args.device)
# Reset grad and model state
optimizer.zero_grad()
label = batch['true_pointcloud'].to(args.device)
#image, vertices, true_vertices, faces=None, idx=None
loss, loss_cd_image, latent_loss = model.get_loss_image(images, vertices, label, idx)
# Backward and optimize
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
optimizer.step()
if (it % batch_iter == 0):
logger.info('[Train] Epoch %04d | Iter %04d | Loss %.4f | Loss Latent %.4f | Loss CD Image %.4f ' \
% (epoch, it, loss.mean().item(), latent_loss.mean().item(), loss_cd_image.mean().item()))
it = it +1
#write outputs
writer.add_scalar('train/loss_latent', loss.mean().item(), it)
writer.flush()
# validation loop to plot predicted correspondences and sampled template
if epoch % args.model_save_freq == 0 or epoch == args.epochs_tf:
if(args.scheduler!=None):
opt_states = {
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'args': args,
'current_epoch': epoch
}
else:
opt_states = {
'optimizer': optimizer.state_dict(),
'args': args,
'current_epoch': epoch
}
# save with the name latest.pt so that you don't waste memory saving all the intermediate models
ckpt_mgr.save(model, args, 0, others=opt_states, step="latest")
if(epoch == args.epochs_tf):
filename = log_dir + "/template_" + str(epoch) + ".particles"
np.savetxt(filename, model.input_x_T)
# valiadation for getting the best model and early stopping check
if epoch % args.val_freq == 0 or epoch == args.epochs:
val_loss_cd_l1, val_loss_cd_l2 = test(epoch, image_inference = True)
# Early stopping
logger.info('[Validation] Epoch %04d | Loss CD L1 %.4f | Loss CD L2 %.4f ' \
% (epoch, val_loss_cd_l1, val_loss_cd_l2))
if (args.chamfer_dist == 'L1'):
val_loss = val_loss_cd_l1
else:
val_loss = val_loss_cd_l2
# check for the best model
if val_loss < best_val_loss:
best_val_loss = val_loss
early_stopping_counter = 0
if(args.scheduler!=None):
opt_states = {
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'args': args,
}
else:
opt_states = {
'optimizer': optimizer.state_dict(),
'args': args,
}
ckpt_mgr.save(model, args, 0, others=opt_states, step='best_tf')
filename = log_dir + "/best_template.particles"
np.savetxt(filename, model.input_x_T)
else:
early_stopping_counter +=1
if early_stopping_counter >= args.early_stopping_patience:
logger.info("Early stopping! No improvement in validation loss.")
# Epoch where T-flank stopped training
args.epochs_tf = epoch
break
except KeyboardInterrupt:
logger.info('Terminating...')
# load the best autoencoder and tf model from current run
ckpt_path = log_dir + "/ckpt_best_tf_.pt"
checkpoint = torch.load(ckpt_path,map_location=args.device)
model.load_state_dict(checkpoint['state_dict'])
best_template = np.loadtxt(log_dir + "/best_template.particles")
best_template = torch.from_numpy(best_template).type(torch.float)
model.set_template(best_template)
slowlearn_epochs = 10
args.early_stopping_patience = args.early_stopping_patience + slowlearn_epochs
initial_lr = 1e-8
image_branch_lr = 1e-5
# train the image encoder only
for param in model.dgcnn.parameters():
param.requires_grad = False
for param in model.imnet.parameters():
param.requires_grad = False
for param in model.encoder.parameters():
param.requires_grad = True
optimizer_i = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=image_branch_lr)
# Define the lambda function for the learning rate scheduler
lr_lambda_i = lambda epoch: initial_lr + (image_branch_lr - initial_lr) * epoch / slowlearn_epochs
scheduler_i = LambdaLR(optimizer_i, lr_lambda_i)
# ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
#------------------------- Image PDM training ------------------------------------------------------------------------------------------------------------------------------#
# ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
logger.info('Start feature alignment and prediction refinement training...')
best_val_loss = float('inf')
best_template = None
try:
early_stopping_counter = 0
for epoch in range(args.epochs):
# torch.cuda.empty_cache()
model.train()
for batch in train_iter:
vertices = batch['pointcloud'].to(args.device)
images = batch['image'].to(args.device)
faces = batch['faces'].to(args.device)
idx = batch['idx'].to(args.device)
# Reset grad and model state
optimizer_i.zero_grad()
label = batch['true_pointcloud'].to(args.device)
loss, loss_cd, latent_loss = model.get_loss_imagecd(image=images, vertices=vertices, label=label, faces=faces, idx=idx)
# Backward and optimize
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
optimizer_i.step()
scheduler_i.step()
if (it % batch_iter == 0):
logger.info('[Train] Epoch %04d | Iter %04d | Loss %.6f | Loss CD %.4f | Loss Latent %.4f ' \
% (epoch, it, loss.mean().item(), loss_cd.mean().item(), latent_loss.mean().item()))
it = it +1
#write outputs
writer.add_scalar('train/loss_cd', loss_cd.mean().item(), it)
writer.add_scalar('train/loss_latent', latent_loss.mean().item(), it)
writer.add_scalar('train/loss', loss, it)
writer.flush()
# validation loop to plot predicted correspondences and sampled template
if epoch % args.model_save_freq == 0 or epoch == args.epochs:
opt_states = {
'optimizer': optimizer_i.state_dict(),
'args': args,
'current_epoch': epoch,
}
# save with the name latest.pt so that you don't waste memory saving all the intermediate models
ckpt_mgr.save(model, args, 0, others=opt_states, step="latest")
if(epoch == args.epochs):
filename = log_dir + "/template_" + str(epoch) + ".particles"
np.savetxt(filename, model.input_x_T)
# valiadation for getting the best model and early stopping check
if epoch % args.val_freq == 0 or epoch == args.epochs:
val_loss_cd_l1, val_loss_cd_l2 = test(epoch, image_inference = True)
# Early stopping
logger.info('[Validation] Epoch %04d | Loss CD L1 %.4f | Loss CD L2 %.4f ' \
% (epoch, val_loss_cd_l1, val_loss_cd_l2))
if (args.chamfer_dist == 'L1'):
val_loss = val_loss_cd_l1
else:
val_loss = val_loss_cd_l2
# check for the best model
if val_loss < best_val_loss:
best_val_loss = val_loss
early_stopping_counter = 0
if(args.scheduler!=None):
opt_states = {
'optimizer_i': optimizer_i.state_dict(),
'scheduler': scheduler.state_dict(),
'args': args,
}
else:
opt_states = {
'optimizer_i': optimizer_i.state_dict(),
'args': args,
}
ckpt_mgr.save(model, args, 0, others=opt_states, step='best')
filename = log_dir + "/best_template.particles"
np.savetxt(filename, model.input_x_T)
else:
early_stopping_counter +=1
if early_stopping_counter >= args.early_stopping_patience:
logger.info("Early stopping! No improvement in validation loss.")
break
except KeyboardInterrupt:
logger.info('Terminating...')
try:
eval()
except KeyboardInterrupt:
logger.info('Terminating...')