-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathXgboost_model.py
194 lines (150 loc) · 7.56 KB
/
Xgboost_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import xgboost as xgb
from sklearn.model_selection import TimeSeriesSplit
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import yfinance as yf
import ta
from bayes_opt import BayesianOptimization
import yaml
import os
class XGBoost_Predictor:
def __init__(self, config_path):
with open(config_path, 'r') as f:
self.config = yaml.safe_load(f)
self.ticker = self.config['ticker']
self.start_date = self.config['start_date']
self.end_date = self.config['end_date']
self.test_size = self.config['test_size']
self.plot_dir = self.config['plot_dir']
self.hyperparameter_tuning = self.config['hyperparameter_tuning']
self.scaler_y = MinMaxScaler()
if not os.path.exists(self.plot_dir):
os.makedirs(self.plot_dir)
self.model = None
def download_data(self):
df = yf.download(self.ticker, start=self.start_date, end=self.end_date)
df = df.dropna()
# Technical Indicators
df['SMA_20'] = df['Close'].rolling(window=20).mean()
df['EMA_12'] = df['Close'].ewm(span=12, adjust=False).mean()
df['RSI'] = ta.momentum.RSIIndicator(close=df["Close"], window=14).rsi()
df['MACD'] = ta.trend.MACD(close=df["Close"]).macd()
df['BB_upper'], df['BB_middle'], df['BB_lower'] = ta.volatility.BollingerBands(
close=df["Close"]).bollinger_hband(), ta.volatility.BollingerBands(
close=df["Close"]).bollinger_mavg(), ta.volatility.BollingerBands(close=df["Close"]).bollinger_lband()
df['OBV'] = ta.volume.OnBalanceVolumeIndicator(close=df["Close"], volume=df["Volume"]).on_balance_volume()
df['Day_of_Week'] = pd.to_datetime(df.index).dayofweek
df['Month'] = pd.to_datetime(df.index).month
# Shift for Previous Values
for col in ['Close', 'SMA_20', 'EMA_12', 'RSI', 'MACD', 'BB_upper', 'BB_lower', 'OBV']:
df[f'Prev_{col}'] = df[col].shift(1)
df = df.dropna()
return df
def prepare_data(self, df):
feature_columns = ['Prev_Close', 'Prev_SMA_20', 'Prev_EMA_12', 'Prev_RSI', 'Prev_MACD',
'Prev_BB_upper', 'Prev_BB_lower', 'Prev_OBV', 'Day_of_Week', 'Month', 'Volume']
# Use TimeSeriesSplit for data splitting and get the last split for training and testing
tscv = TimeSeriesSplit(n_splits=5)
for train_index, test_index in tscv.split(df):
pass # Iterate until the last split
# Fit and transform scaler for the final split
scaler_x = MinMaxScaler()
X_train = scaler_x.fit_transform(df[feature_columns].iloc[train_index])
X_test = scaler_x.transform(df[feature_columns].iloc[test_index])
self.scaler_y.fit(df[['Close']].iloc[train_index]) # Fit the scaler to the last split
y_train = self.scaler_y.transform(df[['Close']].iloc[train_index])
y_test = self.scaler_y.transform(df[['Close']].iloc[test_index])
return X_train, X_test, y_train, y_test
def optimize_xgb(self, X_train, y_train):
def xgb_evaluate(max_depth, n_estimators, learning_rate, subsample, colsample_bytree):
params = {
'max_depth': int(max_depth),
'n_estimators': int(n_estimators),
'learning_rate': learning_rate,
'subsample': subsample,
'colsample_bytree': colsample_bytree,
}
model = xgb.XGBRegressor(**params)
tscv = TimeSeriesSplit(n_splits=5)
scores = []
for train_index, val_index in tscv.split(X_train):
X_train_split, X_val_split = X_train[train_index], X_train[val_index]
y_train_split, y_val_split = y_train[train_index], y_train[val_index]
model.fit(X_train_split, y_train_split)
predictions = model.predict(X_val_split)
mse = mean_squared_error(y_val_split, predictions)
scores.append(-mse) # Negative MSE for maximization
return np.mean(scores)
optimizer = BayesianOptimization(
f=xgb_evaluate,
pbounds={
'max_depth': (
self.hyperparameter_tuning['max_depth']['min'], self.hyperparameter_tuning['max_depth']['max']),
'n_estimators': (
self.hyperparameter_tuning['n_estimators']['min'], self.hyperparameter_tuning['n_estimators']['max']),
'learning_rate': (
self.hyperparameter_tuning['learning_rate']['min'], self.hyperparameter_tuning['learning_rate']['max']),
'subsample': (
self.hyperparameter_tuning['subsample']['min'], self.hyperparameter_tuning['subsample']['max']),
'colsample_bytree': (self.hyperparameter_tuning['colsample_bytree']['min'],
self.hyperparameter_tuning['colsample_bytree']['max'])
},
random_state=42
)
optimizer.maximize(n_iter=self.hyperparameter_tuning['n_iter'])
return optimizer.max['params']
def train_model(self, X_train, y_train, params):
params['max_depth'] = int(params['max_depth'])
params['n_estimators'] = int(params['n_estimators'])
params['learning_rate'] = float(params['learning_rate'])
params['subsample'] = float(params['subsample'])
params['colsample_bytree'] = float(params['colsample_bytree'])
self.model = xgb.XGBRegressor(**params)
self.model.fit(X_train, y_train)
def predict(self, X):
return self.model.predict(X)
def evaluate(self, y_true, y_pred):
y_true_real = self.scaler_y.inverse_transform(y_true)
y_pred_real = self.scaler_y.inverse_transform(y_pred.reshape(-1, 1))
mse = mean_squared_error(y_true_real, y_pred_real)
rmse = np.sqrt(mse)
return rmse, y_true_real, y_pred_real
def plot_results(self, y_true, y_pred):
plt.figure(figsize=(12, 6))
plt.plot(y_true, label="Actual Price", color="blue")
plt.plot(y_pred, label="Predicted Price", color="red")
plt.title(f"{self.ticker} Actual vs. Predicted Prices - XGBoost Model")
plt.xlabel("Date")
plt.ylabel("Price")
plt.legend()
plt.savefig(os.path.join(self.plot_dir, f"{self.ticker}_prediction.png"))
plt.close()
def save_model(self, filename):
self.model.save_model(filename)
def load_model(self, filename):
self.model = xgb.XGBRegressor()
self.model.load_model(filename)
def run(self):
df = self.download_data()
scaler_x = MinMaxScaler()
scaler_y = MinMaxScaler()
# Prepare data using the scalers
X_train, X_test, y_train, y_test = self.prepare_data(df)
# Now use scaler_y in evaluate
best_params = self.optimize_xgb(X_train, y_train)
print("Best Parameters:", best_params)
self.train_model(X_train, y_train, best_params)
y_pred_train = self.predict(X_train)
y_pred_test = self.predict(X_test)
train_rmse, y_train_real, y_pred_train_real = self.evaluate(y_train, y_pred_train)
test_rmse, y_test_real, y_pred_test_real = self.evaluate(y_test, y_pred_test)
print("Train RMSE:", train_rmse)
print("Test RMSE:", test_rmse)
self.plot_results(y_test_real, y_pred_test_real)
self.save_model("models/xgboost_model.json")
if __name__ == "__main__":
predictor = XGBoost_Predictor("configs/xgboost_config.yaml")
predictor.run()