-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLstm_model.py
246 lines (206 loc) · 9.63 KB
/
Lstm_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import tensorflow as tf
from tensorflow.keras.layers import Input, LSTM, Dense, Bidirectional, Dropout
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
import yfinance as yf
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import numpy as np
import matplotlib.pyplot as plt
import ta
from ta.momentum import RSIIndicator
import pandas as pd
import pickle
from typing import Tuple, Dict, Any
import logging
from configs.LstmConfig import Config
import os
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class LSTMPredictor:
def __init__(self):
self.model = None
self.scaler_x = MinMaxScaler()
self.scaler_y = MinMaxScaler()
@staticmethod
def yf_Down(ticker: str, start: str, end: str) -> pd.DataFrame:
try:
df = yf.download(ticker, start=start, end=end)
if df.empty:
raise ValueError(f"No data available for {ticker} between {start} and {end}")
df = df.dropna()
# Technical Indicators
df['SMA_20'] = df['Close'].rolling(window=Config.SMA_WINDOW).mean()
df['EMA_12'] = df['Close'].ewm(span=Config.EMA_WINDOW, adjust=False).mean()
rsi_indicator = RSIIndicator(close=df["Close"], window=Config.RSI_WINDOW)
df['RSI'] = rsi_indicator.rsi()
df['Day_of_Week'] = pd.to_datetime(df.index).dayofweek
# Shift for Previous Values
for col in ['Close', 'SMA_20', 'EMA_12', 'RSI']:
df[f'Prev_{col}'] = df[col].shift(1)
return df.dropna()
except Exception as e:
logging.error(f"Error downloading stock data: {str(e)}")
raise
def prepare_data(self, df: pd.DataFrame) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
try:
x = self.scaler_x.fit_transform(df[Config.FEATURE_COLUMNS])
y = self.scaler_y.fit_transform(df[[Config.TARGET_COLUMN]])
return train_test_split(x, y, test_size=Config.VALIDATION_SPLIT, shuffle=False)
except Exception as e:
logging.error(f"Error preparing data: {str(e)}")
raise
def build_model(self, input_shape: Tuple[int, int]) -> Model:
try:
inputs = Input(shape=input_shape)
x = inputs
for units in Config.LSTM_UNITS:
x = Bidirectional(LSTM(units=units, return_sequences=True))(x)
x = Dropout(Config.DROPOUT_RATE)(x)
x = LSTM(units=Config.LSTM_UNITS[-1])(x)
for units in Config.DENSE_UNITS:
x = Dense(units, activation='relu')(x)
outputs = Dense(1)(x)
model = Model(inputs=inputs, outputs=outputs)
model.compile(optimizer=Config.OPTIMIZER, loss='mse')
return model
except Exception as e:
logging.error(f"Error building model: {str(e)}")
raise
def train_model(self, X_train: np.ndarray, y_train: np.ndarray, X_test: np.ndarray, y_test: np.ndarray) -> None:
try:
self.model = self.build_model((X_train.shape[1], 1))
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=1e-5)
history = self.model.fit(
X_train, y_train,
batch_size=Config.BATCH_SIZE,
epochs=Config.EPOCHS,
validation_data=(X_test, y_test),
callbacks=[early_stopping, reduce_lr],
verbose=2
)
return history
except Exception as e:
logging.error(f"Error training model: {str(e)}")
raise
def predict(self, X_test: np.ndarray) -> np.ndarray:
try:
yhat = self.model.predict(X_test, verbose=0)
return self.scaler_y.inverse_transform(yhat)
except Exception as e:
logging.error(f"Error making predictions: {str(e)}")
raise
@staticmethod
def evaluate_model(y_true: np.ndarray, y_pred: np.ndarray) -> float:
return np.sqrt(mean_squared_error(y_true, y_pred))
@staticmethod
def plot_results(y_true: np.ndarray, y_pred: np.ndarray, ticker: str) -> None:
try:
plt.figure(figsize=(12, 6))
plt.plot(y_true, label='Actual Price')
plt.plot(y_pred, label='Predicted Price')
plt.title(f'{ticker} Price Prediction - LSTM Model')
plt.xlabel('Time')
plt.ylabel('Price')
plt.legend()
plt.show()
plt.savefig(os.path.join(os.getenv('PLOT_DIR', '.'), f'{ticker}_prediction_plot.png'))
except Exception as e:
logging.error(f"Error plotting results: {str(e)}")
raise
def save_model(self, filename: str) -> None:
try:
with open(filename, 'wb') as f:
pickle.dump({'model': self.model, 'scaler_x': self.scaler_x, 'scaler_y': self.scaler_y}, f)
logging.info(f"Model saved to {filename}")
except Exception as e:
logging.error(f"Error saving model: {str(e)}")
raise
@classmethod
def load_model(cls, filename: str) -> 'LSTMPredictor':
try:
with open(filename, 'rb') as f:
data = pickle.load(f)
predictor = cls()
predictor.model = data['model']
predictor.scaler_x = data['scaler_x']
predictor.scaler_y = data['scaler_y']
logging.info(f"Model loaded from {filename}")
return predictor
except Exception as e:
logging.error(f"Error loading model: {str(e)}")
raise
@staticmethod
def run(ticker: str) -> None:
print("LSTM selected.")
predictor = LSTMPredictor()
print("Load saved model? (Must be in same directory.)")
selection_c = input("Y/N: ").upper()
try:
if selection_c == "Y":
predictor = LSTMPredictor.load_model(Config.MODEL_SAVE_PATH)
logging.info("Model loaded successfully.")
Config.START_DATE = input("Start Date (YYYY-MM-DD): ")
Config.END_DATE = input("End Date (YYYY-MM-DD): ")
Config.TICKER = ticker
df = predictor.yf_Down(Config.TICKER, Config.START_DATE, Config.END_DATE)
X_train, X_test, y_train, y_test = predictor.prepare_data(df)
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
y_pred = predictor.predict(X_test)
y_true = predictor.scaler_y.inverse_transform(y_test)
rmse = predictor.evaluate_model(y_true, y_pred)
logging.info(f'RMSE: {rmse}')
predictor.plot_results(y_true, y_pred, Config.TICKER)
elif selection_c == "N":
Config.START_DATE = input("Start Date (YYYY-MM-DD): ")
Config.END_DATE = input("End Date (YYYY-MM-DD): ")
Config.TICKER = ticker
# Download and prepare data
df = predictor.yf_Down(Config.TICKER, Config.START_DATE, Config.END_DATE)
X_train, X_test, y_train, y_test = predictor.prepare_data(df)
# Reshape data for LSTM input
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
# Train model
history = predictor.train_model(X_train, y_train, X_test, y_test)
# Make predictions
y_pred = predictor.predict(X_test)
y_true = predictor.scaler_y.inverse_transform(y_test)
# Evaluate model
rmse = predictor.evaluate_model(y_true, y_pred)
logging.info(f'RMSE: {rmse}')
# Plot results
predictor.plot_results(y_true, y_pred, Config.TICKER)
# Ask to save model
save_model = input("Save model? Y/N: ").upper()
if save_model == "Y":
predictor.save_model(Config.MODEL_SAVE_PATH)
logging.info("Model saved successfully.")
else:
logging.warning("Invalid selection. Please choose Y or N.")
except Exception as e:
logging.error(f"An error occurred: {str(e)}")
print("An error occurred. Please check the logs for more information.")
if __name__ == "__main__":
try:
predictor = LSTMPredictor()
# Download and prepare data
df = predictor.download_stock_data(Config.TICKER, Config.START_DATE, Config.END_DATE)
X_train, X_test, y_train, y_test = predictor.prepare_data(df)
# Train model
history = predictor.train_model(X_train, y_train, X_test, y_test)
# Make predictions
y_pred = predictor.predict(X_test)
y_true = predictor.scaler_y.inverse_transform(y_test)
# Evaluate and plot results
rmse = predictor.evaluate_model(y_true, y_pred)
logging.info(f"RMSE: {rmse}")
predictor.plot_results(y_true, y_pred, Config.TICKER)
# Save model
predictor.save_model(Config.MODEL_SAVE_PATH)
# Load model
loaded_predictor = LSTMPredictor.load_model(Config.MODEL_SAVE_PATH)
except Exception as e:
logging.error(f"An error occurred in the main execution: {str(e)}")