-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzad2.py
136 lines (114 loc) · 3.84 KB
/
zad2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
[10 pkt.] Zadanie 2. Proszę zaimplementować algorytm, który mając na wejściu dwa drzewa BST
(przechowujące liczby typu int; proszę zadeklarować odpowiednie struktury danych) zwraca nowe
drzewo BST zawierające wyłącznie te liczby, które występują w dokładnie jednym z drzew (ale nie w
obu). Algorytm powinien być jak najszybszy i wykorzystywać jak najmniej pamięci. Jaka jest złożoność
czasowa zaproponowanego algorytmu? Co można powiedzieć o zrównoważeniu drzew tworzonych
przez zaproponowany algorytm?
"""
from random import randint
class BSTNode:
def __init__(self, key):
self.key = key
self.parent = self.left = self.right = None
class BST:
def __init__(self):
self.root = None
@property
def min(self):
return self.min_child(self.root)
def insert(self, key):
node = BSTNode(key)
if not self.root:
self.root = node
else:
curr = self.root
while True:
# Enter the right subtree if a key of a value inserted is
# greater than the key of the current BST node
if node.key > curr.key:
if curr.right:
curr = curr.right
else:
curr.right = node
node.parent = curr
break
# Enter the left subtree if a key of a value inserted is
# lower than the key of the current BST node
elif node.key < curr.key:
if curr.left:
curr = curr.left
else:
curr.left = node
node.parent = curr
break
# Return False if a node with the same key already exists
# (We won't change its value)
else:
return False
# Return True if an object was successfully inserted to BST
return True
@staticmethod
def min_child(node):
while node.left:
node = node.left
# Return a node of the minimum key
return node
def successor(self, node):
if node.right:
return self.min_child(node.right)
while node.parent:
if node.parent.left == node:
return node.parent
node = node.parent
return None
def disjoint_values_BST(T1, T2):
curr1 = T1.min
curr2 = T2.min
res = BST()
while curr1 and curr2:
if curr1.key < curr2.key:
res.insert(curr1.key)
curr1 = T1.successor(curr1)
elif curr2.key < curr1.key:
res.insert(curr2.key)
curr2 = T2.successor(curr2)
else:
curr1 = T1.successor(curr1)
curr2 = T2.successor(curr2)
# Add remaining values which are only in one tree
while curr1:
res.insert(curr1.key)
curr1 = T1.successor(curr1)
while curr2:
res.insert(curr2.key)
curr2 = T1.successor(curr2)
return res
def test(fn):
V1 = [randint(-100, 100) for _ in range(100)]
V2 = [randint(-100, 100) for _ in range(100)]
disjoint = set(V1).symmetric_difference(V2)
def create_BST(values):
bst = BST()
for v in values:
bst.insert(v)
return bst
bst1 = create_BST(V1)
bst2 = create_BST(V2)
res_bst = fn(bst1, bst2)
res_values = []
def dfs(node):
if not node:
return
res_values.append(node.key)
dfs(node.left)
dfs(node.right)
dfs(res_bst.root)
print(V1)
print(V2)
print(disjoint)
print(res_values)
print(disjoint.symmetric_difference(res_values))
return not disjoint.symmetric_difference(res_values)
if __name__ == '__main__':
print('Ok?', test(disjoint_values_BST))