-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhomework #12.Rmd
224 lines (189 loc) · 6.38 KB
/
homework #12.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
---
title: "Homework #12"
date: "`r Sys.Date()`"
output:
prettydoc::html_pretty:
theme: architect
highlight: github
---
## Advanced ggplotting
```{r echo=FALSE, message=FALSE, warning=FALSE}
library(ggstatsplot)
library(palmerpenguins)
library(tidyverse)
library(patchwork)
library(plotly)
```
```{r echo=FALSE, message=FALSE, warning=FALSE}
data("penguins", package = "palmerpenguins")
penguins <- drop_na(penguins)
```
## Exploring histogram
```{r echo=FALSE, message=FALSE, warning=FALSE}
hist <- ggplot(data = penguins, aes(x = flipper_length_mm)) +
geom_histogram(aes(fill = species),
color = "black", # Add black outline to bars
alpha = 0.5,
position = "identity",
binwidth = 5) + # Adjust bin width as needed
scale_fill_manual(values = c("darkblue", "red", "cyan4")) +
labs(x = "Flipper length (mm)",
y = "Frequency",
title = "Flipper") +
theme(panel.background = element_rect(fill = "lightgray"), # Add background color
panel.grid.major = element_line(color = "white", size = 0.5), # Add grid lines
panel.grid.minor = element_line(color = "white", size = 0.25),
plot.title = element_text(size = 18, face = "bold", color = "red"),
legend.title=element_text(size=10, face = "italic", color = "blue"),
legend.text=element_text(size=6, color="darkorange"),
axis.title = element_text(face = "bold", color="purple"))
hist
```
## Convert ggplot to interactive plot
```{r echo=FALSE, message=FALSE, warning=FALSE}
hist_interactive <- ggplotly(hist)
hist_interactive
```
```{r echo=FALSE, message=FALSE, warning=FALSE}
# # Initial bin width
# initial_binwidth <- 5
#
# # Function to create histogram
# create_histogram <- function(binwidth) {
# ggplot(data = penguins, aes(x = flipper_length_mm)) +
# geom_histogram(aes(fill = species),
# color = "black",
# alpha = 0.5,
# position = "identity",
# binwidth = binwidth) +
# scale_fill_manual(values = c("darkblue", "red", "cyan4")) +
# labs(x = "Flipper length (mm)",
# y = "Frequency",
# title = "Flipper ") +
# theme(panel.background = element_rect(fill = "lightgray"),
# panel.grid.major = element_line(color = "white", size = 0.5),
# panel.grid.minor = element_line(color = "white", size = 0.25))
# }
#
# # Create initial plot
# histogram <- create_histogram(initial_binwidth)
#
# # Convert ggplot to plotly
# histogram_plotly <- ggplotly(histogram)
#
# # Add slider for bin width
# histogram_plotly <- histogram_plotly %>%
# layout(
# updatemenus = list(
# list(
# active = 0,
# buttons = list(
# list(
# label = "Bin Width",
# method = "update",
# args = list(list(visible = c(TRUE, FALSE)),
# list(title = "Bin Width",
# xaxis = list(title = "Flipper length (mm)"),
# yaxis = list(title = "Frequency")))),
# list(
# label = "5",
# method = "update",
# args = list(list(visible = c(TRUE, FALSE)),
# list(title = "Bin Width",
# xaxis = list(title = "Flipper length (mm)"),
# yaxis = list(title = "Frequency")),
# list(binwidth = 5))),
# list(
# label = "10",
# method = "update",
# args = list(list(visible = c(TRUE, FALSE)),
# list(title = "Bin Width",
# xaxis = list(title = "Flipper length (mm)"),
# yaxis = list(title = "Frequency")),
# list(binwidth = 10)))
# )
# )
# )
# )
#
# # Show plot
# #histogram_plotly
```
## Exploring scatter plot
```{r echo=FALSE, message=FALSE, warning=FALSE}
point <- ggplot(data = penguins,
aes(x = flipper_length_mm,
y = body_mass_g)) +
geom_point(aes(color = species,
shape = species),
size = 6,
alpha = 0.8) +
geom_smooth(method = "lm", se = FALSE, color = "black", linetype = "dashed") + # Add a trend line
scale_color_manual(values = c("darkblue","red","cyan4")) +
scale_shape_manual(values = c(16, 17, 15)) + # Modify point shapes
labs(title = "Penguin size",
subtitle = "Flipper length and body mass",
x = "Flipper length (mm)",
y = "Body mass (g)",
color = "Penguin species",
shape = "Penguin species") +
theme(plot.title = element_text(size = 18, face = "bold", color = "red"),
legend.title=element_text(size=10, face = "italic", color = "blue"),
legend.text=element_text(size=6, color="darkgreen"),
axis.title = element_text(face = "bold", color="orange"))
point
```
## Interactive plot
```{r echo=FALSE, message=FALSE, warning=FALSE}
ggplotly(point)
```
## Statistical plot
```{r echo=FALSE, message=FALSE, warning=FALSE}
stat_plot <- ggbetweenstats(
data = penguins,
x = species,
y = bill_length_mm
)
stat_plot <- stat_plot +
# Add labels and title
labs(
x = "Penguins Species",
y = "Bill Length",
title = "Distribution of bill length across penguins species"
) +
# Customizations
theme(
# This is the new default font in the plot
text = element_text(family = "Roboto", size = 8, color = "black"),
plot.title = element_text(
family = "Lobster Two",
size = 20,
face = "bold",
color = "#2a475e"
),
# Statistical annotations below the main title
plot.subtitle = element_text(
family = "Roboto",
size = 15,
face = "bold",
color="#1b2838"
),
plot.title.position = "plot", # slightly different from default
axis.text = element_text(size = 10, color = "black"),
axis.title = element_text(size = 12)
)
stat_plot
#stat_plot <- stat_plot
#stat_plot + facet_wrap(~species, scales = "free_y")
```
# Multiple plots in ggplot2 with patchwork
## Exploring different layouts
```{r echo=FALSE, message=FALSE, warning=FALSE}
point + hist + stat_plot + plot_layout(ncol = 1, nrow = 3)
```
```{r echo=FALSE, message=FALSE, warning=FALSE}
hist | point
```
```{r echo=FALSE, message=FALSE, warning=FALSE}
hist / point
```