-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFunctional Programming.Rmd
429 lines (325 loc) · 9.87 KB
/
Functional Programming.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
---
title: 'Lecture #26: Functional Programming'
author: "Nicholas J. Gotelli"
date: "April 21st, 2020"
output:
html_document:
highlight: tango
theme: united
pdf_document: default
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE,
message=FALSE,
warning=FALSE)
```
### Different function types in R
```{r}
# different kinds of functions
z <- 1:10
# built-in functions ("prefix" functions)
mean(z)
# "in-fix" functions
`+`(z,100)
# user-defined functions
# --------------------------------------
# FUNCTION my_fun
# description: calculate maximum of sin of x + x
# inputs: numeric vector
# outputs: 1-element numeric vector
########################################
my_fun <- function(x=runif(5)) {
z <- max(sin(x) + x)
return(z)
} # end of my_fun
# --------------------------------------
my_fun()
my_fun(z)
# anonymous functions
# unnamed, used for simple calculations, usually with a single input, by convention called x
function(x) x + 3 # anonymous function
function(x) x + 3 (10) # try to provide input
(function(x) x + 3) (10) # use of parentheses to call
m <- matrix(1:20, nrow = 5, byrow = TRUE)
print(m)
output <- vector("list", nrow(m))
str(output)
print(output)
for (i in seq_len(nrow(m))) {
output[[i]] <- my_fun(m[i,])
}
print(output)
# using tapply to do the same thing (t(agged)apply)
# tapply(X,INDEX,FUN...)
# X is a vector (atomic or list) to be subset
# index is a list of factors (or character strings) # with one or more groups
# FUN is a function applied to each element of the different subsetted groups
# ... additional inputs to FUN
row_out <- apply(X = m,
MARGIN = 1,
FUN = my_fun)
print(row_out)
apply(m, 2, my_fun)
apply(m, c(1,2), my_fun)
apply(m, 1, function(x) max(sin(x) + x))
apply(m, 2, function(x) max(sin(x) + x))
apply(m, 1, sample)
t(apply(m,1,sample))
apply(m, 1, function(x) x[sample(seq_along(x), size= sample(seq_along(x), size=1))])
df <- data.frame(x=runif(20), y=runif(20), z=runif(20))
output<- vector("list",ncol(df))
print(output)
for (i in seq_len(ncol(df))){
output[[i]] <- sd(df[,i])/mean(df[,i])
}
print(output)
# using tapply to do the same thing (t(agged)apply)
# tapply(X,INDEX,FUN...)
# X is a vector (atomic or list) to be subset
# index is a list of factors (or character strings) # with one or more groups
# FUN is a function applied to each element of the different subsetted groups
# ... additional inputs to FUN
summary_out <- lapply (X=df,
FUN = function(x) sd(x)/mean(x))
print(summary_out)
treatment <- rep(c("control", "treatment"), each = (nrow(df)/2))
print(treatment)
df2 <- cbind(df, treatment)
head(df2)
output2 <- vector("list",ncol(df2))
for (i in seq_len(ncol(df2))) {
if(!is.numeric(df2[,i])) next
output2[i] <- sd(df2[,i])/mean(df2[,i])
}
print(output2)
lapply(df2,function(x) if(is.numeric(x)) sd(x)/mean(x))
z <- lapply (df2, function(x) if(is.numeric(x)) sd(x)/mean(x))
z <- unlist(z)
print(z)
print(df2)
g <- unique(df2$treatment)
print(g)
out_g <- vector("list",length(g))
names(out_g) <- g
print(out_g)
for (i in seq_along(g)){
df_sub <- df2[df2$treatment==g[i],]
out_g[i] <- sd(df_sub$x)/mean(df_sub$x)
}
print(out_g)
z <- tapply(X=df2$x,
INDEX=df2$treatment,
FUN= function(x) sd(x)/mean(x))
print(z)
# --------------------------------------
# FUNCTION pop_gen
# description: generate a stochastic population track of varying length
# inputs: number of time steps
# outputs: population track
# randomly chosen integers
########################################
pop_gen <- function(z=sample.int(n=10,size=1)) {
n <- runif(z)
return(n) # note returns a numeric vector of stochastic length
} # end of pop_gen
# --------------------------------------
pop_gen()
n_reps <- 20
list_out <- vector("list",n_reps)
for(i in seq_len(n_reps)){
list_out[[i]] <- list(pop_gen())
}
head(list_out)
list_out[[1]]
# using replicate to do the same thing
# replicate(n,expr)
# n is the number of times the operation is to be repeated
# expr is a function (base, or user-defined), or an expression (like an anonymous function, but without the function(x) header; just the bare code for execution).
z_out <- replicate(n=5,pop_gen())
print(z_out)
# use previous example of parameter sweep for
# species area function S=cA^z
# this has parameters c, z, and A as inputs
# first, let's set up a data frame
# with all parameter combinations
a_pars <- 1:10
c_pars <- c(100,150,125)
z_pars <- c(0.10,0.16,0.26,0.30)
df <- expand.grid(a=a_pars,c=c_pars,z=z_pars)
head(df)
df_out <-cbind(df,s=NA)
for (i in seq_len(nrow(df))) {
df_out$s[i] <- df$c[i]*(df$a[i]^df$z[i])
}
head(df_out)
# vector or variables that function needs to be applied to
df_out$s <- mapply(function(a, c, z) c*(a^z), df$a,df$c,df$z)
head(df_out)
# The best way to do it
df_out$s <- df_out$c*(df_out$a^df_out$z)
head(df_out)
# first create some short user-defined functions
my_sum <- function(a,b) a + b
my_dif <- function(a,b) a - b
my_mult <- function(a,b) a*b
# we already know that built in functions can be called directly from within a function
# build in finction in R
funct_1 <- function(a=3,b=2) sum(a,b)
funct_1()
# our function
funct_2 <- function(a=3,b=2) my_sum(a,b)
funct_2()
funct_3 <- function(a=3,b=2) my_mult(a,b)
funct_3()
# each time we want to use a different one of the "my" functions, we have to create a new function to call it.
# now pass data AND another function into a function as parameters:
algebra <- function(x=my_sum,a=3,b=2) x(a,b)
algebra(x=my_sum)
algebra(x=my_dif)
algebra(x=my_mult)
algebra(x=sum)#
algebra(x=mean)
# clumsy_function(fun_name="my_sum") {
# if (fun_name =="my_sum") my_sum() else
# }
print(algemy_mult())
print(algebra())
output2 <- rep(NA,ncol(df2))
for (i in seq_len(ncol(df2))) {
if(!is.numeric(df2[,i])) next
output2[i] <- sd(df2[,i])/mean(df2[,i])
}
print(output2)
```
### Functions that call functions
```{r}
# first create some short user-defined functions
my_sum <- function(a,b) a + b
my_dif <- function(a,b) a - b
my_mult <- function(a,b) a*b
# we already know that built in functions can be called directly from within a function
funct_1 <- function(a=3,b=2) sum(a,b)
funct_1()
funct_2 <- function(a=3,b=2) my_sum(a,b)
funct_2()
funct_3 <- function(a=3,b=2) my_mult(a,b)
funct_3()
# each time we want to use a different one of the "my" functions, we have to create a new function to call it.
# now pass data AND another function into a function as parameters:
algebra <- function(x=my_sum,a=3,b=2) x(a,b)
output2 <- rep(NA,ncol(df2))
for (i in seq_len(ncol(df2))) {
if(!is.numeric(df2[,i])) next
output2[i] <- sd(df2[,i])/mean(df2[,i])
}
print(output2)
```
#### `lapply` solution
```{r}
lapply(df2,function(x) if(is.numeric(x)) sd(x)/mean(x))
# if you wanted the output as a vector, you could
# just unlist it:
z <- lapply(df2,function(x) if(is.numeric(x)) sd(x)/mean(x))
z <- unlist(z)
print(z) # note difference in output length!
```
### Third Task: split/apply/combine for groups in a data frame
#### `for loop` solution
```{r}
# use df2 for this, and split over two groups
print(df2)
g <- unique(df2$treatment)
print(g)
out_g <- rep(NA,length(g))
names(out_g) <- g
print(out_g)
for (i in seq_along(g)){
df_sub <- df2[df2$treatment==g[i],]
out_g[i] <- sd(df_sub$x)/mean(df_sub$x)
}
print(out_g)
```
#### `tapply` solution
```{r}
# using tapply to do the same thing (t(agged)apply)
# tapply(X,INDEX,FUN...)
# X is a vector (atomic or list) to be subset
# index is a list of factors (or character strings) # with one or more groups
# FUN is a function applied to each element of the different subsetted groups
# ... additional inputs to FUN
z <- tapply(X=df2$x,
INDEX=df2$treatment,
FUN= function(x) sd(x)/mean(x))
print(z)
```
### Fourth Task: Replicate a stochastic process
```{r}
# --------------------------------------
# FUNCTION pop_gen
# description: generate a stochastic population track of varying length
# inputs: number of time steps
# outputs: population track
########################################
pop_gen <- function(z=sample.int(n=10,size=1)) {
n <- runif(z)
return(n) # note returns a numeric vector of stochastic length
} # end of pop_gen
# --------------------------------------
pop_gen()
```
#### `for loop` solution
```{r}
n_reps <- 20
list_out <- vector("list",n_reps)
for(i in seq_len(n_reps)){
list_out[i] <- list(pop_gen())
}
head(list_out)
list_out[[1]]
```
#### `replicate` solution
```{r}
# using replicate to do the same thing
# replicate(n,expr)
# n is the number of times the operation is to be repeated
# expr is a function (base, or user-defined), or an expression (like an anonymous function, but without the function(x) header; just the bare code for execution).
z_out <- replicate(n=5,pop_gen())
print(z_out)
```
### Fifth Task: Sweep a function with all parameter combinations
```{r}
# use previous example of parameter sweep for
# species area function S=cA^z
# this has parameters c, z, and A as inputs
# first, let's set up a data frame
# with all parameter combiinations
a_pars <- 1:10
c_pars <- c(100,150,125)
z_pars <- c(0.10,0.16,0.26,0.30)
df <- expand.grid(a=a_pars,c=c_pars,z=z_pars)
head(df)
```
#### `for loop` solution
```{r}
df_out <-cbind(df,s=NA)
for (i in seq_len(nrow(df))) {
df_out$s[i] <- df$c[i]*(df$a[i]^df$z[i])
}
head(df_out)
```
#### `mapply` solution
```{r}
# using mapply to do the same thing (m(ultiple)apply)
# mapply(FUN,...,MoreArgs)
# FUN is the function to be used (note it is listed first!)
#...arguments to vectorize over(vectors or lists)
#MoreArgs list of additional arguments that are constant in all of the different runs
df_out$s <- mapply(function(a, c, z) c*(a^z), df$a,df$c,df$z)
head(df_out)
```
#### the correct solution
```{r}
# no need for loops or mapply for this simple
# function. We can just vectorize it with a single line of code!
df_out$s <- df_out$c*(df_out$a^df_out$z)
head(df_out)