-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathaffine_registration.py
256 lines (221 loc) · 11.5 KB
/
affine_registration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import time
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage as nd
import math
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils
import torch.nn.functional as F
from torchsummary import summary
import dataloaders as dl
import augmentation as aug
import cost_functions as cf
import utils
import paths
# from networks import affine_network_attention as an # Uncomment and use instead of the simple network for the more accurate patch-based affine registration (at the cost of longer training/inference time)
from networks import affine_network_simple as an
training_path = None # TO DEFINE
validation_path = None # TO DEFINE
models_path = paths.models_path
figures_path = paths.figures_path
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def training(training_params):
model_name = training_params['model_name']
num_epochs = training_params['num_epochs']
batch_size = training_params['batch_size']
learning_rate = training_params['learning_rate']
initial_path = training_params['initial_path']
decay_rate = training_params['decay_rate']
model_save_path = os.path.join(models_path, model_name)
model = an.load_network(device, path=initial_path)
model = model.to(device)
parameters = model.parameters()
optimizer = optim.Adam(parameters, learning_rate)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lambda epoch: decay_rate**epoch)
min_translation = -0.005
max_translation = 0.005
min_rotation = -5
max_rotation = 5
min_shear = -0.0001
max_shear = 0.0001
min_scale = 0.9
max_scale = 1.15
params = dict()
params['min_translation'] = min_translation
params['max_translation'] = max_translation
params['min_rotation'] = min_rotation
params['max_rotation'] = max_rotation
params['min_shear'] = min_shear
params['max_shear'] = max_shear
params['min_scale'] = min_scale
params['max_scale'] = max_scale
transforms = aug.affine_augmentation(params, True)
training_loader = dl.UnsupervisedLoader(training_path, transforms=transforms)
validation_loader = dl.UnsupervisedLoader(validation_path, transforms=None)
training_dataloader = torch.utils.data.DataLoader(training_loader, batch_size = batch_size, shuffle = True, num_workers = 4, collate_fn = dl.collate_to_list_unsupervised)
validation_dataloader = torch.utils.data.DataLoader(validation_loader, batch_size = batch_size, shuffle = True, num_workers = 4, collate_fn = dl.collate_to_list_unsupervised)
cost_function = cf.ncc_loss_global
cost_function_params = dict()
# Training starts here
train_history = []
val_history = []
training_size = len(training_dataloader.dataset)
validation_size = len(validation_dataloader.dataset)
print("Training size: ", training_size)
print("Validation size: ", validation_size)
initial_training_loss = 0.0
initial_validation_loss = 0.0
for sources, targets in training_dataloader:
with torch.set_grad_enabled(False):
for i in range(len(sources)):
source = sources[i]
target = targets[i]
source = source.to(device)
target = target.to(device)
source = source + 0.00001*torch.randn((source.size(0), source.size(1))).to(device)
target = target + 0.00001*torch.randn((source.size(0), source.size(1))).to(device)
loss = cost_function(source, target, device=device, **cost_function_params)
initial_training_loss += loss.item()
for sources, targets in validation_dataloader:
with torch.set_grad_enabled(False):
for i in range(len(sources)):
source = sources[i]
target = targets[i]
source = source.to(device)
target = target.to(device)
source = source + 0.00001*torch.randn((source.size(0), source.size(1))).to(device)
target = target + 0.00001*torch.randn((source.size(0), source.size(1))).to(device)
loss = cost_function(source, target, device=device, **cost_function_params)
initial_validation_loss += loss.item()
print("Initial training loss: ", initial_training_loss / training_size)
print("Initial validation loss: ", initial_validation_loss / validation_size)
for epoch in range(num_epochs):
bet = time.time()
print("Current epoch: ", str(epoch + 1) + "/" + str(num_epochs))
# Training
train_running_loss = 0.0
model.train()
for sources, targets in training_dataloader:
optimizer.zero_grad()
with torch.set_grad_enabled(True):
for i in range(len(sources)):
source = sources[i]
target = targets[i]
source = source.to(device)
target = target.to(device)
source = source + 0.00001*torch.randn((source.size(0), source.size(1))).to(device)
target = target + 0.00001*torch.randn((source.size(0), source.size(1))).to(device)
calculated_transform = model(source.view(1, 1, source.size(0), source.size(1)), target.view(1, 1, target.size(0), target.size(1)))
transformed_source = utils.tensor_affine_transform(source.view(1, 1, source.size(0), source.size(1)), calculated_transform).view(source.size(0), source.size(1))
loss = cost_function(transformed_source, target, device=device, **cost_function_params)
loss_before = cost_function(source, target, device=device, **cost_function_params)
total_loss = loss - loss_before
total_loss.backward()
train_running_loss += loss.item()
optimizer.step()
print("Train Loss: ", train_running_loss / training_size)
train_history.append(train_running_loss / training_size)
# Validation
val_running_loss = 0.0
model.eval()
for sources, targets in validation_dataloader:
with torch.set_grad_enabled(False):
for i in range(len(sources)):
source = sources[i]
target = targets[i]
source = source.to(device)
target = target.to(device)
source = source + 0.00001*torch.randn((source.size(0), source.size(1))).to(device)
target = target + 0.00001*torch.randn((source.size(0), source.size(1))).to(device)
calculated_transform = model(source.view(1, 1, source.size(0), source.size(1)), target.view(1, 1, target.size(0), target.size(1)))
transformed_source = utils.tensor_affine_transform(source.view(1, 1, source.size(0), source.size(1)), calculated_transform).view(source.size(0), source.size(1))
loss = cost_function(transformed_source, target, device=device, **cost_function_params)
val_running_loss += loss.item()
print("Val Loss: ", val_running_loss / validation_size)
val_history.append(val_running_loss / validation_size)
scheduler.step()
eet = time.time()
print("Epoch time: ", eet - bet, "seconds.")
print("Estimated time to end: ", (eet - bet)*(num_epochs-epoch), "seconds.")
if model_save_path is not None:
torch.save(model.state_dict(), model_save_path)
plt.figure()
plt.plot(train_history, "r-")
plt.plot(val_history, "b-")
plt.grid(True)
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.legend(["Train", "Validation"])
plt.savefig(os.path.join(figures_path, model_name + ".png"), bbox_inches = 'tight', pad_inches = 0)
plt.show()
def visualization(model_name):
model_path = os.path.join(models_path, model_name)
model = an.load_network(device, path=model_path)
model = model.to(device)
batch_size = 4
validation_loader = dl.UnsupervisedLoader(validation_path, transforms=None)
validation_dataloader = torch.utils.data.DataLoader(validation_loader, batch_size = batch_size, shuffle = True, num_workers = 4, collate_fn = dl.collate_to_list_unsupervised)
cost_function = cf.ncc_loss_global
cost_function_params = dict()
validation_size = len(validation_dataloader.dataset)
total_loss_before = 0.0
total_loss_after = 0.0
model.eval()
for sources, targets in validation_dataloader:
with torch.set_grad_enabled(False):
for i in range(len(sources)):
source = sources[i]
target = targets[i]
source = source.to(device)
target = target.to(device)
calculated_transform = model(source.view(1, 1, source.size(0), source.size(1)), target.view(1, 1, target.size(0), target.size(1)))
transformed_source = utils.tensor_affine_transform(source.view(1, 1, source.size(0), source.size(1)), calculated_transform).view(source.size(0), source.size(1))
loss_before = cost_function(source, target, device=device, **cost_function_params)
loss_after = cost_function(transformed_source, target, device=device, **cost_function_params)
print("Loss before: ", loss_before.item())
print("Loss after: ", loss_after.item())
total_loss_before += loss_before.item()
total_loss_after += loss_after.item()
plt.figure()
plt.subplot(1, 3, 1)
plt.imshow(source.detach().cpu().numpy(), cmap='gray')
plt.axis('off')
plt.title("Source")
plt.subplot(1, 3, 2)
plt.imshow(target.detach().cpu().numpy(), cmap='gray')
plt.axis('off')
plt.title("Target")
plt.subplot(1, 3, 3)
plt.imshow(transformed_source.detach().cpu().numpy(), cmap='gray')
plt.axis('off')
plt.title("Transformed Source")
plt.show()
print("Initial validation loss: ", total_loss_before / validation_size)
print("Final validation loss: ", total_loss_after / validation_size)
def affine_registration(source, target, model, device='cpu'):
with torch.set_grad_enabled(False):
output_min_size = 512
new_shape = utils.calculate_new_shape_min((source.size(0), source.size(1)), output_min_size)
resampled_source = utils.resample_tensor(source, new_shape, device=device)
resampled_target = utils.resample_tensor(target, new_shape, device=device)
calculated_transform = model(resampled_source.view(1, 1, resampled_source.size(0), resampled_source.size(1)), resampled_target.view(1, 1, resampled_target.size(0), resampled_target.size(1)))
displacement_field = utils.transform_to_displacement_field(resampled_source.view(1, 1, resampled_source.size(0), resampled_source.size(1)), calculated_transform, device=device)
displacement_field = utils.upsample_displacement_field(displacement_field, (2, source.size(0), source.size(1)), device=device)
return displacement_field
def run():
training_params = dict()
training_params['model_name'] = None # TO DEFINE
training_params['num_epochs'] = 500
training_params['batch_size'] = 1
training_params['learning_rate'] = 0.0001
training_params['initial_path'] = None
training_params['decay_rate'] = 0.995
training_params['add_noise'] = True
training(training_params)
model_name = None # TO DEFINE
visualization(model_name)
if __name__ == "__main__":
run()