-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_models.py
187 lines (148 loc) · 5.96 KB
/
convert_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch as th
import coremltools as ct
from tensorflow.python.keras.layers.recurrent import PeepholeLSTMCell
from keras.layers import RNN, Dense
from keras.models import Sequential
from torch.utils import mobile_optimizer
# =====================#
# TORCHSCRIPT #
# =====================#
class LSTMStep(th.nn.Module):
def __init__(self, input_size, hidden_size):
super().__init__()
self.hidden_size = hidden_size
# Input gate
self.input_weights = th.nn.Parameter(th.empty(hidden_size, input_size))
self.input_recurrent_weights = th.nn.Parameter(
th.empty(hidden_size, hidden_size))
self.input_peephole_weights = th.nn.Parameter(th.empty(hidden_size))
self.input_bias = th.nn.Parameter(th.empty(hidden_size))
# Forget gate
self.forget_weights = th.nn.Parameter(
th.empty(hidden_size, input_size))
self.forget_recurrent_weights = th.nn.Parameter(
th.empty(hidden_size, hidden_size))
self.forget_peephole_weights = th.nn.Parameter(th.empty(hidden_size))
self.forget_bias = th.nn.Parameter(th.empty(hidden_size))
# Cell gate
self.cell_weights = th.nn.Parameter(th.empty(hidden_size, input_size))
self.cell_recurrent_weights = th.nn.Parameter(
th.empty(hidden_size, hidden_size))
self.cell_bias = th.nn.Parameter(th.empty(hidden_size))
# Output gate
self.output_weights = th.nn.Parameter(
th.empty(hidden_size, input_size))
self.output_recurrent_weights = th.nn.Parameter(
th.empty(hidden_size, hidden_size))
self.output_peephole_weights = th.nn.Parameter(th.empty(hidden_size))
self.output_bias = th.nn.Parameter(th.empty(hidden_size))
self.sigmoid = th.nn.Sigmoid()
self.tanh = th.nn.Tanh()
def forward(self,
xt, # type: th.Tensor
ht, # type: th.Tensor
ct # type: th.Tensor
):
"""
input size: [sequence_length, input_size]
"""
# type: (...) --> Tupel[Tensor, Tensor]
it = self.sigmoid(th.matmul(self.input_weights, xt) +
th.matmul(self.input_recurrent_weights, ht) +
self.input_peephole_weights * ct +
self.input_bias)
ft = self.sigmoid(th.matmul(self.forget_weights, xt) +
th.matmul(self.forget_recurrent_weights, ht) +
self.forget_peephole_weights * ct +
self.forget_bias)
gt = self.tanh(th.matmul(self.cell_weights, xt) +
th.matmul(self.cell_recurrent_weights, ht) +
self.cell_bias)
ct = ft * ct + it * gt
ot = self.sigmoid(th.matmul(self.output_weights, xt) +
th.matmul(self.output_recurrent_weights, ht) +
self.output_peephole_weights * ct +
self.output_bias)
ht = ot * self.tanh(ct)
return ht, ct
class LSTMCell(th.nn.Module):
def __init__(self, input_size, hidden_size):
super().__init__()
self.hidden_size = hidden_size
x0 = th.zeros(input_size)
h0 = th.zeros(hidden_size)
c0 = th.zeros(hidden_size)
self.lstm_step = th.jit.trace(
LSTMStep(input_size, hidden_size), (x0, h0, c0))
def forward(self,
input
):
"""
input size: [sequence_length, input_size]
"""
# type: (th.Tensor) --> th.Tensor
ht, ct = th.zeros(self.hidden_size), th.zeros(self.hidden_size)
out = []
for xt in input:
ht, ct = self.lstm_step(xt, ht, ct)
out.append(ht.unsqueeze(0))
return th.cat(out, dim=0)
class FeedForwardLayer(th.nn.Module):
def __init__(self, input_size):
super().__init__()
self.weights = th.nn.Parameter(th.empty(input_size, 1))
self.bias = th.nn.Parameter(th.empty(1))
self.sigmoid = th.nn.Sigmoid()
def forward(self,
input
):
"""
input size: [sequence_length, input_size]
"""
# type: (th.Tensor) --> th.Tensor
return self.sigmoid(th.matmul(input, self.weights) + self.bias)
class RNNTorchScript(th.nn.Module):
def __init__(self, input_size, hidden_size):
super().__init__()
self.lstm0 = LSTMCell(input_size, hidden_size)
self.lstm1 = LSTMCell(hidden_size, hidden_size)
self.lstm2 = LSTMCell(hidden_size, hidden_size)
self.ffl = FeedForwardLayer(hidden_size)
def forward(self,
input
):
"""
input size: [sequence_length, input_size]
"""
# type: (Tensor) --> Tensor
x = self.lstm0(input)
x = self.lstm1(x)
x = self.lstm2(x)
return self.ffl(x)
# Convert model to TorchScript
rnn = RNNTorchScript(162, 25)
rnn_ts = th.jit.script(rnn)
rnn_ts_opti = mobile_optimizer.optimize_for_mobile(rnn_ts)
rnn_ts_opti.save('TorchScriptVSCoreML/TorchScriptVSCoreML/MLModel/rnn.pt')
# ================ #
# COREML #
# ================ #
length = None
n_features = 162
n_hidden = 25
rnn_keras = Sequential()
rnn_keras.add(RNN(PeepholeLSTMCell(
units=n_hidden), return_sequences=True, input_shape=(length, n_features)))
rnn_keras.add(RNN(PeepholeLSTMCell(units=n_hidden), return_sequences=True))
rnn_keras.add(RNN(PeepholeLSTMCell(units=n_hidden), return_sequences=True))
rnn_keras.add(Dense(1, activation='sigmoid'))
rnn_keras.summary()
# Convert model to CoreML
rnn_coreml = ct.convert(rnn_keras)
mlmodel_path = "TorchScriptVSCoreML/TorchScriptVSCoreML/MLModel/rnn.mlmodel"
rnn_coreml.save(mlmodel_path)
# Rename input/output
spec = ct.utils.load_spec(mlmodel_path)
ct.utils.rename_feature(spec, "rnn_input", "melspec")
ct.utils.rename_feature(spec, "Identity", "activations")
ct.utils.save_spec(spec, mlmodel_path)