-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmake_bldg_room_co.py
99 lines (77 loc) · 2.85 KB
/
make_bldg_room_co.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from cProfile import label
import os
from tqdm import tqdm
from load_matterport3d_dataset import Matterport3dDataset
from model_utils import get_category_index_map
from perplexity_measure import compute_object_norm_inv_ppl
from extract_labels import create_label_lists
import numpy as np
from sympy.utilities.iterables import multiset_permutations
import pickle
import torch
from torch_geometric.loader import DataLoader
import torch.nn.functional as F
from transformers import (
BertModel,
BertTokenizer,
RobertaModel,
RobertaTokenizer,
GPT2Model,
GPT2Tokenizer,
GPTNeoModel,
AutoTokenizer,
AutoModelForCausalLM,
GPTJModel,
)
def make_bldg_room_co():
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dataset = Matterport3dDataset('./mp_data/bldg_infer.pkl')
labels, pl_labels = create_label_lists(dataset)
building_list, room_list, object_list = labels
building_list_pl, room_list_pl, object_list_pl = pl_labels
building_list = ["house", "office complex", "spa resort"]
building_list_pl = ["houses", "office complexes", "spa resorts"]
dataloader = DataLoader(dataset, batch_size=82)
bldg_room_co = np.load(
"cooccurrency_matrices/norm_bldg_room/building_room.npy")
bldg_room_co = torch.zeros(bldg_room_co.shape).to(device)
batch = next(iter(dataloader))
label = (
batch.y[batch.building_mask],
batch.y[batch.room_mask],
batch.y[batch.object_mask],
)
y_room = F.one_hot(label[1]).type(torch.LongTensor)
(
room_building_edge_index,
object_room_edge_index,
room_edge_index,
object_edge_index,
) = (
batch.room_building_edge_index,
batch.object_room_edge_index,
batch.room_edge_index,
batch.object_edge_index,
)
category_index_map = get_category_index_map(batch)
excluded_idxs = torch.tensor([0, 1, 21, 26]).to(device)
room_counts = torch.zeros([3, 27]).to(device)
bldg_counts = torch.zeros(3).to(device)
correct, total = 0, 0
data_dict = {bldg_label: [0, 0] for bldg_label in building_list}
for i in tqdm(range(len(label[0]))):
mask = category_index_map[room_building_edge_index[1]] == i
neighbor_dists = y_room[category_index_map[room_building_edge_index[0]
[mask]]].to(device)
room_mask = torch.sum(neighbor_dists, 0)
room_mask[excluded_idxs] = 0
room_counts[label[0][i]] += room_mask
bldg_counts[label[0][i]] += 1
room_mask = torch.sum(neighbor_dists, 0) > 0
room_mask[excluded_idxs] = 0
bldg_room_co[label[0][i]] += room_mask * 1
bldg_room_co = bldg_room_co.cpu().numpy()
np.save("./cooccurrency_matrices/bldg_room/building_room.npy",
bldg_room_co)
if __name__ == "__main__":
make_bldg_room_co()