-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDistribution.py
172 lines (123 loc) · 5.22 KB
/
Distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
'''
Created on 16.07.2014
@author: Jimbo
'''
import numpy as np
import scipy.stats as stats
import math
class UnivariateNormal(object):
def __init__(self, mean, variance):
self.mean = mean
self.variance = variance
def getSample(self, currentValue):
if currentValue == None:
return np.random.normal(self.mean, self.variance)
else:
return np.random.normal(currentValue, self.variance)
def getPDF(self, value, currentValue):
if currentValue==None:
return stats.norm.pdf(value, loc=self.mean, scale=self.variance)
else:
return stats.norm.pdf(value, loc=currentValue, scale=self.variance)
def getStartPoint(self):
return self.mean
def adjust(self, adjustParameter):
self.variance = self.variance
class MultivariateNormal(object):
def __init__(self, meanVector, covarianceMatrix, beta=0.05):
self.mean = meanVector
self.covarianceMatrix = covarianceMatrix
self.beta = beta
def getSample(self, currentValue, sampleCovariance=None):
if sampleCovariance==None:
if currentValue == None:
return np.random.multivariate_normal(self.mean, self.covarianceMatrix)
else:
return np.random.multivariate_normal(currentValue, self.covarianceMatrix)
else:
#adjustedDistribution = MultivariateNormal(self.mean, 2.38**2 * sampleCovariance) # sampleCovariance is already divided by dimensionality in the MH method
# return (1-self.beta) * adjustedDistribution.getSample(currentValue) + self.beta * self.getSample(currentValue)
return (1-self.beta) * np.random.multivariate_normal(currentValue, sampleCovariance) + self.beta * self.getSample(currentValue)
def getPDF(self, value, currentValue):
if currentValue==None:
return 1/( (2*np.pi)**(self.mean.shape[0]/2) * np.linalg.det(self.covarianceMatrix)**0.5 ) * np.e**(np.dot(np.dot( -0.5*np.transpose((value-self.mean)), np.linalg.inv(self.covarianceMatrix)), (value-self.mean)) )
else:
return 1/( (2*np.pi)**(currentValue.shape[0]/2) * np.linalg.det(self.covarianceMatrix)**0.5 ) * np.e**(np.dot(np.dot( -0.5*np.transpose((value-currentValue)), np.linalg.inv(self.covarianceMatrix)), (value-currentValue)) )
def getStartPoint(self):
return np.random.multivariate_normal(self.mean, self.covarianceMatrix)
class RegionalMultivariateNorm(object):
def __init__(self, mu, sigma):
self.mu = mu
self.sigma = sigma
def getPDF(self, x):
size = len(x)
if size == len(self.mu) and (size, size) == self.sigma.shape:
det = np.linalg.det(self.sigma)
if det == 0:
raise NameError("The covariance matrix can't be singular")
norm_const = 1.0/ ( math.pow((2*np.pi),float(size)/2) * math.pow(det,1.0/2) )
x_mu = np.matrix(x -self.mu)
inv = np.linalg.inv(self.sigma)
result = math.pow(math.e, -0.5 * (x_mu * inv * x_mu.T))
return norm_const * result
else:
raise NameError("The dimensions of the input don't match")
def arbitraryPDF(x):
if 0<x[1]<4:
return stats.uniform.pdf(x[0]) * 0.1*x[1]
else:
return 0.0000000000000000000000000000001
class GaussianMixture(object):
def __init__(self, mu, sigma, muTwo, sigmaTwo):
self.one = RegionalMultivariateNorm(mu, sigma)
self.two = RegionalMultivariateNorm(muTwo, sigmaTwo)
def getOne(self):
return self.one
def getTwo(self):
return self.two
def getPDF(self, x):
return self.one.getPDF(x)+self.two.getPDF(x)
class AdaptiveMHProposal(object):
def __init__(self):
pass
def getSample(self):
pass
def getPDF(self, value):
pass
def getStartPoint(self):
pass
def adjust(self):
pass
class AdaptiveGibbsProposal(object):
def __init__(self, dimensionality):
self.logVariance = np.zeros(dimensionality)
def getSample(self, currentValue, index):
sample = currentValue.copy()
np.put(sample, index, np.random.normal(sample[index], 10**self.logVariance[index]))
return sample
def getStartPoint(self):
return np.array([np.random.normal(0, 1) for var in self.logVariance])
def adjust(self, list, n):
delta = min(0.01, n**(-0.5))
for i in xrange(self.logVariance.size):
if list[i][1] > 0:
acceptance = list[i][0] / list[i][1]
else:
acceptance = 0
# print i, self.logVariance[i], acceptance
if acceptance > 0.44:
self.logVariance[i] += delta
elif acceptance < 0.44:
self.logVariance[i] -= delta
# print "to", self.logVariance[i]
class CoercedAcceptanceProposal(object):
def __init__(self):
pass
def getSample(self):
pass
def getPDF(self, value):
pass
def getStartPoint(self):
pass
def adjust(self):
pass