-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathdata.py
110 lines (91 loc) · 4.51 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import tensorflow as tf
import tf2lib as tl
# ==============================================================================
# = datasets =
# ==============================================================================
def make_32x32_dataset(dataset, batch_size, drop_remainder=True, shuffle=True, repeat=1):
if dataset == 'mnist':
(train_images, _), (_, _) = tf.keras.datasets.mnist.load_data()
train_images.shape = train_images.shape + (1,)
elif dataset == 'fashion_mnist':
(train_images, _), (_, _) = tf.keras.datasets.fashion_mnist.load_data()
train_images.shape = train_images.shape + (1,)
elif dataset == 'cifar10':
(train_images, _), (_, _) = tf.keras.datasets.cifar10.load_data()
else:
raise NotImplementedError
@tf.function
def _map_fn(img):
img = tf.image.resize(img, [32, 32])
img = tf.clip_by_value(img, 0, 255)
img = img / 127.5 - 1
return img
dataset = tl.memory_data_batch_dataset(train_images,
batch_size,
drop_remainder=drop_remainder,
map_fn=_map_fn,
shuffle=shuffle,
repeat=repeat)
img_shape = (32, 32, train_images.shape[-1])
len_dataset = len(train_images) // batch_size
return dataset, img_shape, len_dataset
def make_celeba_dataset(img_paths, batch_size, resize=64, drop_remainder=True, shuffle=True, repeat=1):
@tf.function
def _map_fn(img):
crop_size = 108
img = tf.image.crop_to_bounding_box(img, (218 - crop_size) // 2, (178 - crop_size) // 2, crop_size, crop_size)
img = tf.image.resize(img, [resize, resize])
img = tf.clip_by_value(img, 0, 255)
img = img / 127.5 - 1
return img
dataset = tl.disk_image_batch_dataset(img_paths,
batch_size,
drop_remainder=drop_remainder,
map_fn=_map_fn,
shuffle=shuffle,
repeat=repeat)
img_shape = (resize, resize, 3)
len_dataset = len(img_paths) // batch_size
return dataset, img_shape, len_dataset
def make_anime_dataset(img_paths, batch_size, resize=64, drop_remainder=True, shuffle=True, repeat=1):
@tf.function
def _map_fn(img):
img = tf.image.resize(img, [resize, resize])
img = tf.clip_by_value(img, 0, 255)
img = img / 127.5 - 1
return img
dataset = tl.disk_image_batch_dataset(img_paths,
batch_size,
drop_remainder=drop_remainder,
map_fn=_map_fn,
shuffle=shuffle,
repeat=repeat)
img_shape = (resize, resize, 3)
len_dataset = len(img_paths) // batch_size
return dataset, img_shape, len_dataset
# ==============================================================================
# = custom dataset =
# ==============================================================================
def make_custom_datset(img_paths, batch_size, resize=64, drop_remainder=True, shuffle=True, repeat=1):
@tf.function
def _map_fn(img):
# ======================================
# = custom =
# ======================================
img = ... # custom preprocessings, should output img in [0.0, 255.0]
# ======================================
# = custom =
# ======================================
img = tf.image.resize(img, [resize, resize])
img = tf.clip_by_value(img, 0, 255)
img = img / 127.5 - 1
return img
dataset = tl.disk_image_batch_dataset(img_paths,
batch_size,
drop_remainder=drop_remainder,
map_fn=_map_fn,
shuffle=shuffle,
repeat=repeat)
img_shape = (resize, resize, 3)
len_dataset = len(img_paths) // batch_size
return dataset, img_shape, len_dataset