-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathindex.html
788 lines (709 loc) · 479 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
<!doctype html>
<html>
<head>
<meta charset='UTF-8'><meta name='viewport' content='width=device-width initial-scale=1'>
<title>entry</title><link href='https://fonts.loli.net/css?family=Open+Sans:400italic,700italic,700,400&subset=latin,latin-ext' rel='stylesheet' type='text/css' /><style type='text/css'>html {overflow-x: initial !important;}:root { --bg-color: #ffffff; --text-color: #333333; --select-text-bg-color: #B5D6FC; --select-text-font-color: auto; --monospace: "Lucida Console",Consolas,"Courier",monospace; --title-bar-height: 20px; }
.mac-os-11 { --title-bar-height: 28px; }
html { font-size: 14px; background-color: var(--bg-color); color: var(--text-color); font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; -webkit-font-smoothing: antialiased; }
body { margin: 0px; padding: 0px; height: auto; bottom: 0px; top: 0px; left: 0px; right: 0px; font-size: 1rem; line-height: 1.42857143; overflow-x: hidden; background-image: inherit; background-size: inherit; background-attachment: inherit; background-origin: inherit; background-clip: inherit; background-color: inherit; tab-size: 4; background-position: inherit inherit; background-repeat: inherit inherit; }
iframe { margin: auto; }
a.url { word-break: break-all; }
a:active, a:hover { outline: 0px; }
.in-text-selection, ::selection { text-shadow: none; background: var(--select-text-bg-color); color: var(--select-text-font-color); }
#write { margin: 0px auto; height: auto; width: inherit; word-break: normal; word-wrap: break-word; position: relative; white-space: normal; overflow-x: visible; padding-top: 36px; }
#write.first-line-indent p { text-indent: 2em; }
#write.first-line-indent li p, #write.first-line-indent p * { text-indent: 0px; }
#write.first-line-indent li { margin-left: 2em; }
.for-image #write { padding-left: 8px; padding-right: 8px; }
body.typora-export { padding-left: 30px; padding-right: 30px; }
.typora-export .footnote-line, .typora-export li, .typora-export p { white-space: pre-wrap; }
.typora-export .task-list-item input { pointer-events: none; }
@media screen and (max-width: 500px) {
body.typora-export { padding-left: 0px; padding-right: 0px; }
#write { padding-left: 20px; padding-right: 20px; }
.CodeMirror-sizer { margin-left: 0px !important; }
.CodeMirror-gutters { display: none !important; }
}
#write li > figure:last-child { margin-bottom: 0.5rem; }
#write ol, #write ul { position: relative; }
img { max-width: 100%; vertical-align: middle; image-orientation: from-image; }
button, input, select, textarea { color: inherit; font-family: inherit; font-size: inherit; font-style: inherit; font-variant-caps: inherit; font-weight: inherit; font-stretch: inherit; line-height: inherit; }
input[type="checkbox"], input[type="radio"] { line-height: normal; padding: 0px; }
*, ::after, ::before { box-sizing: border-box; }
#write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write p, #write pre { width: inherit; }
#write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write p { position: relative; }
p { line-height: inherit; }
h1, h2, h3, h4, h5, h6 { break-after: avoid-page; break-inside: avoid; orphans: 4; }
p { orphans: 4; }
h1 { font-size: 2rem; }
h2 { font-size: 1.8rem; }
h3 { font-size: 1.6rem; }
h4 { font-size: 1.4rem; }
h5 { font-size: 1.2rem; }
h6 { font-size: 1rem; }
.md-math-block, .md-rawblock, h1, h2, h3, h4, h5, h6, p { margin-top: 1rem; margin-bottom: 1rem; }
.hidden { display: none; }
.md-blockmeta { color: rgb(204, 204, 204); font-weight: 700; font-style: italic; }
a { cursor: pointer; }
sup.md-footnote { padding: 2px 4px; background-color: rgba(238, 238, 238, 0.7); color: rgb(85, 85, 85); border-top-left-radius: 4px; border-top-right-radius: 4px; border-bottom-right-radius: 4px; border-bottom-left-radius: 4px; cursor: pointer; }
sup.md-footnote a, sup.md-footnote a:hover { color: inherit; text-transform: inherit; text-decoration: inherit; }
#write input[type="checkbox"] { cursor: pointer; width: inherit; height: inherit; }
figure { overflow-x: auto; margin: 1.2em 0px; max-width: calc(100% + 16px); padding: 0px; }
figure > table { margin: 0px; }
tr { break-inside: avoid; break-after: auto; }
thead { display: table-header-group; }
table { border-collapse: collapse; border-spacing: 0px; width: 100%; overflow: auto; break-inside: auto; text-align: left; }
table.md-table td { min-width: 32px; }
.CodeMirror-gutters { border-right-width: 0px; background-color: inherit; }
.CodeMirror-linenumber { }
.CodeMirror { text-align: left; }
.CodeMirror-placeholder { opacity: 0.3; }
.CodeMirror pre { padding: 0px 4px; }
.CodeMirror-lines { padding: 0px; }
div.hr:focus { cursor: none; }
#write pre { white-space: pre-wrap; }
#write.fences-no-line-wrapping pre { white-space: pre; }
#write pre.ty-contain-cm { white-space: normal; }
.CodeMirror-gutters { margin-right: 4px; }
.md-fences { font-size: 0.9rem; display: block; break-inside: avoid; text-align: left; overflow: visible; white-space: pre; background-image: inherit; background-size: inherit; background-attachment: inherit; background-origin: inherit; background-clip: inherit; background-color: inherit; position: relative !important; background-position: inherit inherit; background-repeat: inherit inherit; }
.md-diagram-panel { width: 100%; margin-top: 10px; text-align: center; padding-top: 0px; padding-bottom: 8px; overflow-x: auto; }
#write .md-fences.mock-cm { white-space: pre-wrap; }
.md-fences.md-fences-with-lineno { padding-left: 0px; }
#write.fences-no-line-wrapping .md-fences.mock-cm { white-space: pre; overflow-x: auto; }
.md-fences.mock-cm.md-fences-with-lineno { padding-left: 8px; }
.CodeMirror-line, twitterwidget { break-inside: avoid; }
.footnotes { opacity: 0.8; font-size: 0.9rem; margin-top: 1em; margin-bottom: 1em; }
.footnotes + .footnotes { margin-top: 0px; }
.md-reset { margin: 0px; padding: 0px; border: 0px; outline: 0px; vertical-align: top; text-decoration: none; text-shadow: none; float: none; position: static; width: auto; height: auto; white-space: nowrap; cursor: inherit; line-height: normal; font-weight: 400; text-align: left; box-sizing: content-box; direction: ltr; background-position: 0px 0px; background-repeat: initial initial; }
li div { padding-top: 0px; }
blockquote { margin: 1rem 0px; }
li .mathjax-block, li p { margin: 0.5rem 0px; }
li blockquote { margin: 1rem 0px; }
li { margin: 0px; position: relative; }
blockquote > :last-child { margin-bottom: 0px; }
blockquote > :first-child, li > :first-child { margin-top: 0px; }
.footnotes-area { color: rgb(136, 136, 136); margin-top: 0.714rem; padding-bottom: 0.143rem; white-space: normal; }
#write .footnote-line { white-space: pre-wrap; }
@media print {
body, html { border: 1px solid transparent; height: 99%; break-after: avoid; break-before: avoid; font-variant-ligatures: no-common-ligatures; }
#write { margin-top: 0px; padding-top: 0px; border-color: transparent !important; }
.typora-export * { -webkit-print-color-adjust: exact; }
.typora-export #write { break-after: avoid; }
.typora-export #write::after { height: 0px; }
.is-mac table { break-inside: avoid; }
}
.footnote-line { margin-top: 0.714em; font-size: 0.7em; }
a img, img a { cursor: pointer; }
pre.md-meta-block { font-size: 0.8rem; min-height: 0.8rem; white-space: pre-wrap; background-color: rgb(204, 204, 204); display: block; overflow-x: hidden; background-position: initial initial; background-repeat: initial initial; }
p > .md-image:only-child:not(.md-img-error) img, p > img:only-child { display: block; margin: auto; }
#write.first-line-indent p > .md-image:only-child:not(.md-img-error) img { left: -2em; position: relative; }
p > .md-image:only-child { display: inline-block; width: 100%; }
#write .MathJax_Display { margin: 0.8em 0px 0px; }
.md-math-block { width: 100%; }
.md-math-block:not(:empty)::after { display: none; }
.MathJax_ref { fill: currentcolor; }
[contenteditable="true"]:active, [contenteditable="true"]:focus, [contenteditable="false"]:active, [contenteditable="false"]:focus { outline: 0px; box-shadow: none; }
.md-task-list-item { position: relative; list-style-type: none; }
.task-list-item.md-task-list-item { padding-left: 0px; }
.md-task-list-item > input { position: absolute; top: 0px; left: 0px; margin-left: -1.2em; margin-top: calc(1em - 10px); border: none; }
.math { font-size: 1rem; }
.md-toc { min-height: 3.58rem; position: relative; font-size: 0.9rem; border-top-left-radius: 10px; border-top-right-radius: 10px; border-bottom-right-radius: 10px; border-bottom-left-radius: 10px; }
.md-toc-content { position: relative; margin-left: 0px; }
.md-toc-content::after, .md-toc::after { display: none; }
.md-toc-item { display: block; color: rgb(65, 131, 196); }
.md-toc-item a { text-decoration: none; }
.md-toc-inner:hover { text-decoration: underline; }
.md-toc-inner { display: inline-block; cursor: pointer; }
.md-toc-h1 .md-toc-inner { margin-left: 0px; font-weight: 700; }
.md-toc-h2 .md-toc-inner { margin-left: 2em; }
.md-toc-h3 .md-toc-inner { margin-left: 4em; }
.md-toc-h4 .md-toc-inner { margin-left: 6em; }
.md-toc-h5 .md-toc-inner { margin-left: 8em; }
.md-toc-h6 .md-toc-inner { margin-left: 10em; }
@media screen and (max-width: 48em) {
.md-toc-h3 .md-toc-inner { margin-left: 3.5em; }
.md-toc-h4 .md-toc-inner { margin-left: 5em; }
.md-toc-h5 .md-toc-inner { margin-left: 6.5em; }
.md-toc-h6 .md-toc-inner { margin-left: 8em; }
}
a.md-toc-inner { font-size: inherit; font-style: inherit; font-weight: inherit; line-height: inherit; }
.footnote-line a:not(.reversefootnote) { color: inherit; }
.md-attr { display: none; }
.md-fn-count::after { content: "."; }
code, pre, samp, tt { font-family: var(--monospace); }
kbd { margin: 0px 0.1em; padding: 0.1em 0.6em; font-size: 0.8em; color: rgb(36, 39, 41); background-color: rgb(255, 255, 255); border: 1px solid rgb(173, 179, 185); border-top-left-radius: 3px; border-top-right-radius: 3px; border-bottom-right-radius: 3px; border-bottom-left-radius: 3px; box-shadow: rgba(12, 13, 14, 0.2) 0px 1px 0px, rgb(255, 255, 255) 0px 0px 0px 2px inset; white-space: nowrap; vertical-align: middle; background-position: initial initial; background-repeat: initial initial; }
.md-comment { color: rgb(162, 127, 3); opacity: 0.8; font-family: var(--monospace); }
code { text-align: left; }
a.md-print-anchor { white-space: pre !important; border: none !important; display: inline-block !important; position: absolute !important; width: 1px !important; right: 0px !important; outline: 0px !important; text-shadow: initial !important; background-position: 0px 0px !important; background-repeat: initial initial !important; }
.md-inline-math .MathJax_SVG .noError { display: none !important; }
.html-for-mac .inline-math-svg .MathJax_SVG { vertical-align: 0.2px; }
.md-math-block .MathJax_SVG_Display { text-align: center; margin: 0px; position: relative; text-indent: 0px; max-width: none; max-height: none; min-height: 0px; min-width: 100%; width: auto; overflow-y: hidden; display: block !important; }
.MathJax_SVG_Display, .md-inline-math .MathJax_SVG_Display { width: auto; margin: inherit; display: inline-block !important; }
.MathJax_SVG .MJX-monospace { font-family: var(--monospace); }
.MathJax_SVG .MJX-sans-serif { font-family: sans-serif; }
.MathJax_SVG { display: inline; font-style: normal; font-weight: 400; line-height: normal; zoom: 90%; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; }
.MathJax_SVG * { transition: none; }
.MathJax_SVG_Display svg { vertical-align: middle !important; margin-bottom: 0px !important; margin-top: 0px !important; }
.os-windows.monocolor-emoji .md-emoji { font-family: "Segoe UI Symbol", sans-serif; }
.md-diagram-panel > svg { max-width: 100%; }
[lang="flow"] svg, [lang="mermaid"] svg { max-width: 100%; height: auto; }
[lang="mermaid"] .node text { font-size: 1rem; }
table tr th { border-bottom-width: 0px; }
video { max-width: 100%; display: block; margin: 0px auto; }
iframe { max-width: 100%; width: 100%; border: none; }
.highlight td, .highlight tr { border: 0px; }
mark { background-color: rgb(255, 255, 0); color: rgb(0, 0, 0); background-position: initial initial; background-repeat: initial initial; }
.md-html-inline .md-plain, .md-html-inline strong, mark .md-inline-math, mark strong { color: inherit; }
mark .md-meta { color: rgb(0, 0, 0); opacity: 0.3 !important; }
@media print {
.typora-export h1, .typora-export h2, .typora-export h3, .typora-export h4, .typora-export h5, .typora-export h6 { break-inside: avoid; }
}
.md-diagram-panel .messageText { stroke: none !important; }
.md-diagram-panel .start-state { fill: var(--node-fill); }
.md-diagram-panel .edgeLabel rect { opacity: 1 !important; }
.md-require-zoom-fix foreignObject { font-size: var(--mermaid-font-zoom); }
.CodeMirror { height: auto; }
.CodeMirror.cm-s-inner { background-image: inherit; background-size: inherit; background-attachment: inherit; background-origin: inherit; background-clip: inherit; background-color: inherit; background-position: inherit inherit; background-repeat: inherit inherit; }
.CodeMirror-scroll { overflow: auto hidden; z-index: 3; }
.CodeMirror-gutter-filler, .CodeMirror-scrollbar-filler { background-color: rgb(255, 255, 255); }
.CodeMirror-gutters { border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221, 221, 221); background-image: inherit; background-size: inherit; background-attachment: inherit; background-origin: inherit; background-clip: inherit; background-color: inherit; white-space: nowrap; background-position: inherit inherit; background-repeat: inherit inherit; }
.CodeMirror-linenumber { padding: 0px 3px 0px 5px; text-align: right; color: rgb(153, 153, 153); }
.cm-s-inner .cm-keyword { color: rgb(119, 0, 136); }
.cm-s-inner .cm-atom, .cm-s-inner.cm-atom { color: rgb(34, 17, 153); }
.cm-s-inner .cm-number { color: rgb(17, 102, 68); }
.cm-s-inner .cm-def { color: rgb(0, 0, 255); }
.cm-s-inner .cm-variable { color: rgb(0, 0, 0); }
.cm-s-inner .cm-variable-2 { color: rgb(0, 85, 170); }
.cm-s-inner .cm-variable-3 { color: rgb(0, 136, 85); }
.cm-s-inner .cm-string { color: rgb(170, 17, 17); }
.cm-s-inner .cm-property { color: rgb(0, 0, 0); }
.cm-s-inner .cm-operator { color: rgb(152, 26, 26); }
.cm-s-inner .cm-comment, .cm-s-inner.cm-comment { color: rgb(170, 85, 0); }
.cm-s-inner .cm-string-2 { color: rgb(255, 85, 0); }
.cm-s-inner .cm-meta { color: rgb(85, 85, 85); }
.cm-s-inner .cm-qualifier { color: rgb(85, 85, 85); }
.cm-s-inner .cm-builtin { color: rgb(51, 0, 170); }
.cm-s-inner .cm-bracket { color: rgb(153, 153, 119); }
.cm-s-inner .cm-tag { color: rgb(17, 119, 0); }
.cm-s-inner .cm-attribute { color: rgb(0, 0, 204); }
.cm-s-inner .cm-header, .cm-s-inner.cm-header { color: rgb(0, 0, 255); }
.cm-s-inner .cm-quote, .cm-s-inner.cm-quote { color: rgb(0, 153, 0); }
.cm-s-inner .cm-hr, .cm-s-inner.cm-hr { color: rgb(153, 153, 153); }
.cm-s-inner .cm-link, .cm-s-inner.cm-link { color: rgb(0, 0, 204); }
.cm-negative { color: rgb(221, 68, 68); }
.cm-positive { color: rgb(34, 153, 34); }
.cm-header, .cm-strong { font-weight: 700; }
.cm-del { text-decoration: line-through; }
.cm-em { font-style: italic; }
.cm-link { text-decoration: underline; }
.cm-error { color: red; }
.cm-invalidchar { color: red; }
.cm-constant { color: rgb(38, 139, 210); }
.cm-defined { color: rgb(181, 137, 0); }
div.CodeMirror span.CodeMirror-matchingbracket { color: rgb(0, 255, 0); }
div.CodeMirror span.CodeMirror-nonmatchingbracket { color: rgb(255, 34, 34); }
.cm-s-inner .CodeMirror-activeline-background { background-image: inherit; background-size: inherit; background-attachment: inherit; background-origin: inherit; background-clip: inherit; background-color: inherit; background-position: inherit inherit; background-repeat: inherit inherit; }
.CodeMirror { position: relative; overflow: hidden; }
.CodeMirror-scroll { height: 100%; outline: 0px; position: relative; box-sizing: content-box; background-image: inherit; background-size: inherit; background-attachment: inherit; background-origin: inherit; background-clip: inherit; background-color: inherit; background-position: inherit inherit; background-repeat: inherit inherit; }
.CodeMirror-sizer { position: relative; }
.CodeMirror-gutter-filler, .CodeMirror-hscrollbar, .CodeMirror-scrollbar-filler, .CodeMirror-vscrollbar { position: absolute; z-index: 6; display: none; }
.CodeMirror-vscrollbar { right: 0px; top: 0px; overflow: hidden; }
.CodeMirror-hscrollbar { bottom: 0px; left: 0px; overflow: hidden; }
.CodeMirror-scrollbar-filler { right: 0px; bottom: 0px; }
.CodeMirror-gutter-filler { left: 0px; bottom: 0px; }
.CodeMirror-gutters { position: absolute; left: 0px; top: 0px; padding-bottom: 30px; z-index: 3; }
.CodeMirror-gutter { white-space: normal; height: 100%; box-sizing: content-box; padding-bottom: 30px; margin-bottom: -32px; display: inline-block; }
.CodeMirror-gutter-wrapper { position: absolute; z-index: 4; border: none !important; background-position: 0px 0px !important; background-repeat: initial initial !important; }
.CodeMirror-gutter-background { position: absolute; top: 0px; bottom: 0px; z-index: 4; }
.CodeMirror-gutter-elt { position: absolute; cursor: default; z-index: 4; }
.CodeMirror-lines { cursor: text; }
.CodeMirror pre { border-top-left-radius: 0px; border-top-right-radius: 0px; border-bottom-right-radius: 0px; border-bottom-left-radius: 0px; border-width: 0px; font-family: inherit; font-size: inherit; margin: 0px; white-space: pre; word-wrap: normal; color: inherit; z-index: 2; position: relative; overflow: visible; background-position: 0px 0px; background-repeat: initial initial; }
.CodeMirror-wrap pre { word-wrap: break-word; white-space: pre-wrap; word-break: normal; }
.CodeMirror-code pre { border-right-width: 30px; border-right-style: solid; border-right-color: transparent; width: fit-content; }
.CodeMirror-wrap .CodeMirror-code pre { border-right-style: none; width: auto; }
.CodeMirror-linebackground { position: absolute; left: 0px; right: 0px; top: 0px; bottom: 0px; z-index: 0; }
.CodeMirror-linewidget { position: relative; z-index: 2; overflow: auto; }
.CodeMirror-wrap .CodeMirror-scroll { overflow-x: hidden; }
.CodeMirror-measure { position: absolute; width: 100%; height: 0px; overflow: hidden; visibility: hidden; }
.CodeMirror-measure pre { position: static; }
.CodeMirror div.CodeMirror-cursor { position: absolute; visibility: hidden; border-right-style: none; width: 0px; }
.CodeMirror div.CodeMirror-cursor { visibility: hidden; }
.CodeMirror-focused div.CodeMirror-cursor { visibility: inherit; }
.cm-searching { background-color: rgba(255, 255, 0, 0.4); background-position: initial initial; background-repeat: initial initial; }
@media print {
.CodeMirror div.CodeMirror-cursor { visibility: hidden; }
}
:root {
--side-bar-bg-color: #fafafa;
--control-text-color: #777;
}
@include-when-export url(https://fonts.loli.net/css?family=Open+Sans:400italic,700italic,700,400&subset=latin,latin-ext);
/* open-sans-regular - latin-ext_latin */
/* open-sans-italic - latin-ext_latin */
/* open-sans-700 - latin-ext_latin */
/* open-sans-700italic - latin-ext_latin */
html {
font-size: 16px;
}
body {
font-family: "Open Sans","Clear Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
color: rgb(51, 51, 51);
line-height: 1.6;
}
#write {
max-width: 860px;
margin: 0 auto;
padding: 30px;
padding-bottom: 100px;
}
@media only screen and (min-width: 1400px) {
#write {
max-width: 1024px;
}
}
@media only screen and (min-width: 1800px) {
#write {
max-width: 1200px;
}
}
#write > ul:first-child,
#write > ol:first-child{
margin-top: 30px;
}
a {
color: #4183C4;
}
h1,
h2,
h3,
h4,
h5,
h6 {
position: relative;
margin-top: 1rem;
margin-bottom: 1rem;
font-weight: bold;
line-height: 1.4;
cursor: text;
}
h1:hover a.anchor,
h2:hover a.anchor,
h3:hover a.anchor,
h4:hover a.anchor,
h5:hover a.anchor,
h6:hover a.anchor {
text-decoration: none;
}
h1 tt,
h1 code {
font-size: inherit;
}
h2 tt,
h2 code {
font-size: inherit;
}
h3 tt,
h3 code {
font-size: inherit;
}
h4 tt,
h4 code {
font-size: inherit;
}
h5 tt,
h5 code {
font-size: inherit;
}
h6 tt,
h6 code {
font-size: inherit;
}
h1 {
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h2 {
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
/*@media print {
.typora-export h1,
.typora-export h2 {
border-bottom: none;
padding-bottom: initial;
}
.typora-export h1::after,
.typora-export h2::after {
content: "";
display: block;
height: 100px;
margin-top: -96px;
border-top: 1px solid #eee;
}
}*/
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h4 {
font-size: 1.25em;
}
h5 {
font-size: 1em;
}
h6 {
font-size: 1em;
color: #777;
}
p,
blockquote,
ul,
ol,
dl,
table{
margin: 0.8em 0;
}
li>ol,
li>ul {
margin: 0 0;
}
hr {
height: 2px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
overflow: hidden;
box-sizing: content-box;
}
li p.first {
display: inline-block;
}
ul,
ol {
padding-left: 30px;
}
ul:first-child,
ol:first-child {
margin-top: 0;
}
ul:last-child,
ol:last-child {
margin-bottom: 0;
}
blockquote {
border-left: 4px solid #dfe2e5;
padding: 0 15px;
color: #777777;
}
blockquote blockquote {
padding-right: 0;
}
table {
padding: 0;
word-break: initial;
}
table tr {
border-top: 1px solid #dfe2e5;
margin: 0;
padding: 0;
}
table tr:nth-child(2n),
thead {
background-color: #f8f8f8;
}
table th {
font-weight: bold;
border: 1px solid #dfe2e5;
border-bottom: 0;
margin: 0;
padding: 6px 13px;
}
table td {
border: 1px solid #dfe2e5;
margin: 0;
padding: 6px 13px;
}
table th:first-child,
table td:first-child {
margin-top: 0;
}
table th:last-child,
table td:last-child {
margin-bottom: 0;
}
.CodeMirror-lines {
padding-left: 4px;
}
.code-tooltip {
box-shadow: 0 1px 1px 0 rgba(0,28,36,.3);
border-top: 1px solid #eef2f2;
}
.md-fences,
code,
tt {
border: 1px solid #e7eaed;
background-color: #f8f8f8;
border-radius: 3px;
padding: 0;
padding: 2px 4px 0px 4px;
font-size: 0.9em;
}
code {
background-color: #f3f4f4;
padding: 0 2px 0 2px;
}
.md-fences {
margin-bottom: 15px;
margin-top: 15px;
padding-top: 8px;
padding-bottom: 6px;
}
.md-task-list-item > input {
margin-left: -1.3em;
}
@media print {
html {
font-size: 13px;
}
table,
pre {
page-break-inside: avoid;
}
pre {
word-wrap: break-word;
}
}
.md-fences {
background-color: #f8f8f8;
}
#write pre.md-meta-block {
padding: 1rem;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border: 0;
border-radius: 3px;
color: #777777;
margin-top: 0 !important;
}
.mathjax-block>.code-tooltip {
bottom: .375rem;
}
.md-mathjax-midline {
background: #fafafa;
}
#write>h3.md-focus:before{
left: -1.5625rem;
top: .375rem;
}
#write>h4.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
#write>h5.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
#write>h6.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
.md-image>.md-meta {
/*border: 1px solid #ddd;*/
border-radius: 3px;
padding: 2px 0px 0px 4px;
font-size: 0.9em;
color: inherit;
}
.md-tag {
color: #a7a7a7;
opacity: 1;
}
.md-toc {
margin-top:20px;
padding-bottom:20px;
}
.sidebar-tabs {
border-bottom: none;
}
#typora-quick-open {
border: 1px solid #ddd;
background-color: #f8f8f8;
}
#typora-quick-open-item {
background-color: #FAFAFA;
border-color: #FEFEFE #e5e5e5 #e5e5e5 #eee;
border-style: solid;
border-width: 1px;
}
/** focus mode */
.on-focus-mode blockquote {
border-left-color: rgba(85, 85, 85, 0.12);
}
header, .context-menu, .megamenu-content, footer{
font-family: "Segoe UI", "Arial", sans-serif;
}
.file-node-content:hover .file-node-icon,
.file-node-content:hover .file-node-open-state{
visibility: visible;
}
.mac-seamless-mode #typora-sidebar {
background-color: #fafafa;
background-color: var(--side-bar-bg-color);
}
.md-lang {
color: #b4654d;
}
.html-for-mac .context-menu {
--item-hover-bg-color: #E6F0FE;
}
#md-notification .btn {
border: 0;
}
.dropdown-menu .divider {
border-color: #e5e5e5;
}
.ty-preferences .window-content {
background-color: #fafafa;
}
.ty-preferences .nav-group-item.active {
color: white;
background: #999;
}
:root {--mermaid-font-zoom:1em ;}
</style>
</head>
<body class='typora-export'>
<div id='write' class=''><h1><a name="appearance-mimicking-surfaces" class="md-header-anchor"></a><span>Appearance-Mimicking Surfaces</span></h1><p><span>Inspired by bas-reliefs, appearance-mimicking surfaces are thin surfaces, or 2.5D images whose normals approximate the normals of a 3D shape. Given a viewpoint and per-vertex depth bounds, the algorithm proposed </span><sup class='md-footnote'><a href='#dfref-footnote-1' name='ref-footnote-1'>1</a></sup><span> finds a globally optimal surface that preserves the appearance of the target shape when observed from the designated viewpoint, while satisfying the depth constraints. </span></p><h2><a name="problem-formulation" class="md-header-anchor"></a><span>Problem Formulation</span></h2><p><span>Let </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.549ex" height="2.066ex" viewBox="0 -783.2 1097.6 889.4" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E2954-MJMATHI-53" d="M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z"></path><path stroke-width="0" id="E2954-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2954-MJMATHI-53" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2954-MJMATHI-6F" x="925" y="513"></use></g></svg></span><script type="math/tex">S^{o}</script><span> be the original surface, and </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.498ex" height="2.066ex" viewBox="0 -783.2 645 889.4" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E2960-MJMATHI-53" d="M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2960-MJMATHI-53" x="0" y="0"></use></g></svg></span><script type="math/tex">S</script><span> be the deformed surface when observed from viewpoint </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.335ex" height="1.461ex" viewBox="0 -522.8 575 629" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E2966-MJMAINB-6F" d="M287 -5Q228 -5 182 10T109 48T63 102T39 161T32 219Q32 272 50 314T94 382T154 423T214 446T265 452H279Q319 452 326 451Q428 439 485 376T542 221Q542 156 514 108T442 33Q384 -5 287 -5ZM399 230V250Q399 280 398 298T391 338T372 372T338 392T282 401Q241 401 212 380Q190 363 183 334T175 230Q175 202 175 189T177 153T183 118T195 91T215 68T245 56T287 50Q348 50 374 84Q388 101 393 132T399 230Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2966-MJMAINB-6F" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{o}</script><span>. Each point </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.168ex" height="2.55ex" viewBox="0 -835.3 933.5 1097.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E2945-MJMAINB-70" d="M32 442L123 446Q214 450 215 450H221V409Q222 409 229 413T251 423T284 436T328 446T382 450Q480 450 540 388T600 223Q600 128 539 61T361 -6H354Q292 -6 236 28L227 34V-132H296V-194H287Q269 -191 163 -191Q56 -191 38 -194H29V-132H98V113V284Q98 330 97 348T93 370T83 376Q69 380 42 380H29V442H32ZM457 224Q457 303 427 349T350 395Q282 395 235 352L227 345V104L233 97Q274 45 337 45Q383 45 420 86T457 224Z"></path><path stroke-width="0" id="E2945-MJMAIN-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2945-MJMAINB-70" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2945-MJMAIN-2032" x="903" y="513"></use></g></svg></span><script type="math/tex">\bold{p}'</script><span> of the deformed surface is constrained to stay on the ray emanating from the viewpoint in the direction of </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.484ex" height="1.824ex" viewBox="0 -522.8 639 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E2955-MJMAINB-70" d="M32 442L123 446Q214 450 215 450H221V409Q222 409 229 413T251 423T284 436T328 446T382 450Q480 450 540 388T600 223Q600 128 539 61T361 -6H354Q292 -6 236 28L227 34V-132H296V-194H287Q269 -191 163 -191Q56 -191 38 -194H29V-132H98V113V284Q98 330 97 348T93 370T83 376Q69 380 42 380H29V442H32ZM457 224Q457 303 427 349T350 395Q282 395 235 352L227 345V104L233 97Q274 45 337 45Q383 45 420 86T457 224Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2955-MJMAINB-70" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{p}</script><span> (line </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.82ex" height="1.824ex" viewBox="0 -522.8 1214 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E2947-MJMAINB-6F" d="M287 -5Q228 -5 182 10T109 48T63 102T39 161T32 219Q32 272 50 314T94 382T154 423T214 446T265 452H279Q319 452 326 451Q428 439 485 376T542 221Q542 156 514 108T442 33Q384 -5 287 -5ZM399 230V250Q399 280 398 298T391 338T372 372T338 392T282 401Q241 401 212 380Q190 363 183 334T175 230Q175 202 175 189T177 153T183 118T195 91T215 68T245 56T287 50Q348 50 374 84Q388 101 393 132T399 230Z"></path><path stroke-width="0" id="E2947-MJMAINB-70" d="M32 442L123 446Q214 450 215 450H221V409Q222 409 229 413T251 423T284 436T328 446T382 450Q480 450 540 388T600 223Q600 128 539 61T361 -6H354Q292 -6 236 28L227 34V-132H296V-194H287Q269 -191 163 -191Q56 -191 38 -194H29V-132H98V113V284Q98 330 97 348T93 370T83 376Q69 380 42 380H29V442H32ZM457 224Q457 303 427 349T350 395Q282 395 235 352L227 345V104L233 97Q274 45 337 45Q383 45 420 86T457 224Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2947-MJMAINB-6F" x="0" y="0"></use><use xlink:href="#E2947-MJMAINB-70" x="575" y="0"></use></g></svg></span><script type="math/tex">\bold{op}</script><span>).</span></p><p><img src="report/normals.png" alt="image-20201201115724580" style="zoom:20%;" /></p><p><span>The perceived difference </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="10.47ex" height="2.671ex" viewBox="0 -835.3 4507.9 1149.8" role="img" focusable="false" style="vertical-align: -0.73ex;"><defs><path stroke-width="0" id="E2956-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E2956-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2956-MJMATHI-53" d="M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z"></path><path stroke-width="0" id="E2956-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E2956-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E2956-MJMAINB-6F" d="M287 -5Q228 -5 182 10T109 48T63 102T39 161T32 219Q32 272 50 314T94 382T154 423T214 446T265 452H279Q319 452 326 451Q428 439 485 376T542 221Q542 156 514 108T442 33Q384 -5 287 -5ZM399 230V250Q399 280 398 298T391 338T372 372T338 392T282 401Q241 401 212 380Q190 363 183 334T175 230Q175 202 175 189T177 153T183 118T195 91T215 68T245 56T287 50Q348 50 374 84Q388 101 393 132T399 230Z"></path><path stroke-width="0" id="E2956-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2956-MJMATHI-64" x="0" y="0"></use><use xlink:href="#E2956-MJMAIN-28" x="523" y="0"></use><use xlink:href="#E2956-MJMATHI-53" x="912" y="0"></use><use xlink:href="#E2956-MJMAIN-2C" x="1557" y="0"></use><g transform="translate(2001,0)"><use xlink:href="#E2956-MJMATHI-53" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2956-MJMATHI-6F" x="925" y="513"></use></g><use xlink:href="#E2956-MJMAIN-2C" x="3099" y="0"></use><use xlink:href="#E2956-MJMAINB-6F" x="3543" y="0"></use><use xlink:href="#E2956-MJMAIN-29" x="4118" y="0"></use></g></svg></span><script type="math/tex">d(S, S^{o}, \bold{o})</script><span> between </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.549ex" height="2.066ex" viewBox="0 -783.2 1097.6 889.4" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E2954-MJMATHI-53" d="M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z"></path><path stroke-width="0" id="E2954-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2954-MJMATHI-53" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2954-MJMATHI-6F" x="925" y="513"></use></g></svg></span><script type="math/tex">S^{o}</script><span> and </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.498ex" height="2.066ex" viewBox="0 -783.2 645 889.4" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E2960-MJMATHI-53" d="M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2960-MJMATHI-53" x="0" y="0"></use></g></svg></span><script type="math/tex">S</script><span> is measured by the sum of the L2 norm of their normals at each point: </span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n132" cid="n132" mdtype="math_block">
<div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display"><span class="MathJax_SVG" id="MathJax-Element-405-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="116.371ex" height="5.695ex" viewBox="0 -1460.3 50104 2451.9" role="img" focusable="false" style="vertical-align: -2.06ex; margin-bottom: -0.243ex; max-width: 100%;"><defs><path stroke-width="0" id="E2927-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2927-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E2927-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2927-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E2927-MJMATHI-53" d="M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z"></path><path stroke-width="0" id="E2927-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E2927-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E2927-MJMAINB-6F" d="M287 -5Q228 -5 182 10T109 48T63 102T39 161T32 219Q32 272 50 314T94 382T154 423T214 446T265 452H279Q319 452 326 451Q428 439 485 376T542 221Q542 156 514 108T442 33Q384 -5 287 -5ZM399 230V250Q399 280 398 298T391 338T372 372T338 392T282 401Q241 401 212 380Q190 363 183 334T175 230Q175 202 175 189T177 153T183 118T195 91T215 68T245 56T287 50Q348 50 374 84Q388 101 393 132T399 230Z"></path><path stroke-width="0" id="E2927-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E2927-MJSZ2-222B" d="M114 -798Q132 -824 165 -824H167Q195 -824 223 -764T275 -600T320 -391T362 -164Q365 -143 367 -133Q439 292 523 655T645 1127Q651 1145 655 1157T672 1201T699 1257T733 1306T777 1346T828 1360Q884 1360 912 1325T944 1245Q944 1220 932 1205T909 1186T887 1183Q866 1183 849 1198T832 1239Q832 1287 885 1296L882 1300Q879 1303 874 1307T866 1313Q851 1323 833 1323Q819 1323 807 1311T775 1255T736 1139T689 936T633 628Q574 293 510 -5T410 -437T355 -629Q278 -862 165 -862Q125 -862 92 -831T55 -746Q55 -711 74 -698T112 -685Q133 -685 150 -700T167 -741Q167 -789 114 -798Z"></path><path stroke-width="0" id="E2927-MJMAIN-2225" d="M133 736Q138 750 153 750Q164 750 170 739Q172 735 172 250T170 -239Q164 -250 152 -250Q144 -250 138 -244L137 -243Q133 -241 133 -179T132 250Q132 731 133 736ZM329 739Q334 750 346 750Q353 750 361 744L362 743Q366 741 366 679T367 250T367 -178T362 -243L361 -244Q355 -250 347 -250Q335 -250 329 -239Q327 -235 327 250T329 739Z"></path><path stroke-width="0" id="E2927-MJMAINB-6E" d="M40 442Q217 450 218 450H224V407L225 365Q233 378 245 391T289 422T362 448Q374 450 398 450Q428 450 448 447T491 434T529 402T551 346Q553 335 554 198V62H623V0H614Q596 3 489 3Q374 3 365 0H356V62H425V194V275Q425 348 416 373T371 399Q326 399 288 370T238 290Q236 281 235 171V62H304V0H295Q277 3 171 3Q64 3 46 0H37V62H106V210V303Q106 353 104 363T91 376Q77 380 50 380H37V442H40Z"></path><path stroke-width="0" id="E2927-MJMATHI-3D5" d="M409 688Q413 694 421 694H429H442Q448 688 448 686Q448 679 418 563Q411 535 404 504T392 458L388 442Q388 441 397 441T429 435T477 418Q521 397 550 357T579 260T548 151T471 65T374 11T279 -10H275L251 -105Q245 -128 238 -160Q230 -192 227 -198T215 -205H209Q189 -205 189 -198Q189 -193 211 -103L234 -11Q234 -10 226 -10Q221 -10 206 -8T161 6T107 36T62 89T43 171Q43 231 76 284T157 370T254 422T342 441Q347 441 348 445L378 567Q409 686 409 688ZM122 150Q122 116 134 91T167 53T203 35T237 27H244L337 404Q333 404 326 403T297 395T255 379T211 350T170 304Q152 276 137 237Q122 191 122 150ZM500 282Q500 320 484 347T444 385T405 400T381 404H378L332 217L284 29Q284 27 285 27Q293 27 317 33T357 47Q400 66 431 100T475 170T494 234T500 282Z"></path><path stroke-width="0" id="E2927-MJMAINB-70" d="M32 442L123 446Q214 450 215 450H221V409Q222 409 229 413T251 423T284 436T328 446T382 450Q480 450 540 388T600 223Q600 128 539 61T361 -6H354Q292 -6 236 28L227 34V-132H296V-194H287Q269 -191 163 -191Q56 -191 38 -194H29V-132H98V113V284Q98 330 97 348T93 370T83 376Q69 380 42 380H29V442H32ZM457 224Q457 303 427 349T350 395Q282 395 235 352L227 345V104L233 97Q274 45 337 45Q383 45 420 86T457 224Z"></path><path stroke-width="0" id="E2927-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E2927-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(48825,0)"><g id="mjx-eqn-1" transform="translate(0,25)"><use xlink:href="#E2927-MJMAIN-28"></use><use xlink:href="#E2927-MJMAIN-31" x="389" y="0"></use><use xlink:href="#E2927-MJMAIN-29" x="889" y="0"></use></g></g><g transform="translate(17606,0)"><g transform="translate(-15,0)"><g transform="translate(0,25)"><use xlink:href="#E2927-MJMATHI-64" x="0" y="0"></use><use xlink:href="#E2927-MJMAIN-28" x="523" y="0"></use><use xlink:href="#E2927-MJMATHI-53" x="912" y="0"></use><use xlink:href="#E2927-MJMAIN-2C" x="1557" y="0"></use><g transform="translate(2001,0)"><use xlink:href="#E2927-MJMATHI-53" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2927-MJMATHI-6F" x="925" y="583"></use></g><use xlink:href="#E2927-MJMAIN-2C" x="3099" y="0"></use><use xlink:href="#E2927-MJMAINB-6F" x="3543" y="0"></use><use xlink:href="#E2927-MJMAIN-29" x="4118" y="0"></use><use xlink:href="#E2927-MJMAIN-3D" x="4785" y="0"></use><g transform="translate(5841,0)"><use xlink:href="#E2927-MJSZ2-222B" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2927-MJMATHI-53" x="786" y="-1269"></use></g><use xlink:href="#E2927-MJMAIN-2225" x="7120" y="0"></use><g transform="translate(7620,0)"><use xlink:href="#E2927-MJMAINB-6E" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2927-MJMATHI-53" x="903" y="509"></use><g transform="translate(639,-366)"><use transform="scale(0.707)" xlink:href="#E2927-MJMATHI-3D5" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2927-MJMAIN-28" x="596" y="0"></use><use transform="scale(0.707)" xlink:href="#E2927-MJMAINB-70" x="985" y="0"></use><use transform="scale(0.707)" xlink:href="#E2927-MJMAIN-2C" x="1624" y="0"></use><use transform="scale(0.707)" xlink:href="#E2927-MJMAINB-6F" x="1902" y="0"></use><use transform="scale(0.707)" xlink:href="#E2927-MJMAIN-29" x="2477" y="0"></use></g></g><use xlink:href="#E2927-MJMAIN-2212" x="10608" y="0"></use><g transform="translate(11608,0)"><use xlink:href="#E2927-MJMAINB-6E" x="0" y="0"></use><g transform="translate(639,359)"><use transform="scale(0.707)" xlink:href="#E2927-MJMATHI-53" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E2927-MJMATHI-6F" x="925" y="610"></use></g><use transform="scale(0.707)" xlink:href="#E2927-MJMAINB-70" x="903" y="-218"></use></g><g transform="translate(13123,0)"><use xlink:href="#E2927-MJMAIN-2225" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2927-MJMAIN-32" x="707" y="583"></use></g><use xlink:href="#E2927-MJMATHI-64" x="14076" y="0"></use><use xlink:href="#E2927-MJMAINB-70" x="14599" y="0"></use></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-405">d(S, S^{o}, \bold{o}) = \int_{S} \Vert \bold{n}^{S}_{\phi(\bold{p}, \bold{o})} - \bold{n}^{S^{o}}_\bold{p} \Vert^{2} d\bold{p}</script></div></div><p><span>Here, </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="12.309ex" height="2.671ex" viewBox="0 -835.3 5299.7 1149.8" role="img" focusable="false" style="vertical-align: -0.73ex;"><defs><path stroke-width="0" id="E2951-MJMATHI-3D5" d="M409 688Q413 694 421 694H429H442Q448 688 448 686Q448 679 418 563Q411 535 404 504T392 458L388 442Q388 441 397 441T429 435T477 418Q521 397 550 357T579 260T548 151T471 65T374 11T279 -10H275L251 -105Q245 -128 238 -160Q230 -192 227 -198T215 -205H209Q189 -205 189 -198Q189 -193 211 -103L234 -11Q234 -10 226 -10Q221 -10 206 -8T161 6T107 36T62 89T43 171Q43 231 76 284T157 370T254 422T342 441Q347 441 348 445L378 567Q409 686 409 688ZM122 150Q122 116 134 91T167 53T203 35T237 27H244L337 404Q333 404 326 403T297 395T255 379T211 350T170 304Q152 276 137 237Q122 191 122 150ZM500 282Q500 320 484 347T444 385T405 400T381 404H378L332 217L284 29Q284 27 285 27Q293 27 317 33T357 47Q400 66 431 100T475 170T494 234T500 282Z"></path><path stroke-width="0" id="E2951-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2951-MJMAINB-70" d="M32 442L123 446Q214 450 215 450H221V409Q222 409 229 413T251 423T284 436T328 446T382 450Q480 450 540 388T600 223Q600 128 539 61T361 -6H354Q292 -6 236 28L227 34V-132H296V-194H287Q269 -191 163 -191Q56 -191 38 -194H29V-132H98V113V284Q98 330 97 348T93 370T83 376Q69 380 42 380H29V442H32ZM457 224Q457 303 427 349T350 395Q282 395 235 352L227 345V104L233 97Q274 45 337 45Q383 45 420 86T457 224Z"></path><path stroke-width="0" id="E2951-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E2951-MJMAINB-6F" d="M287 -5Q228 -5 182 10T109 48T63 102T39 161T32 219Q32 272 50 314T94 382T154 423T214 446T265 452H279Q319 452 326 451Q428 439 485 376T542 221Q542 156 514 108T442 33Q384 -5 287 -5ZM399 230V250Q399 280 398 298T391 338T372 372T338 392T282 401Q241 401 212 380Q190 363 183 334T175 230Q175 202 175 189T177 153T183 118T195 91T215 68T245 56T287 50Q348 50 374 84Q388 101 393 132T399 230Z"></path><path stroke-width="0" id="E2951-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2951-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E2951-MJMAIN-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2951-MJMATHI-3D5" x="0" y="0"></use><use xlink:href="#E2951-MJMAIN-28" x="596" y="0"></use><use xlink:href="#E2951-MJMAINB-70" x="985" y="0"></use><use xlink:href="#E2951-MJMAIN-2C" x="1624" y="0"></use><use xlink:href="#E2951-MJMAINB-6F" x="2068" y="0"></use><use xlink:href="#E2951-MJMAIN-29" x="2643" y="0"></use><use xlink:href="#E2951-MJMAIN-3D" x="3310" y="0"></use><g transform="translate(4366,0)"><use xlink:href="#E2951-MJMAINB-70" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2951-MJMAIN-2032" x="903" y="513"></use></g></g></svg></span><script type="math/tex">\phi(\bold{p}, \bold{o}) = \bold{p}'</script><span> on surface </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.498ex" height="2.066ex" viewBox="0 -783.2 645 889.4" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E2960-MJMATHI-53" d="M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2960-MJMATHI-53" x="0" y="0"></use></g></svg></span><script type="math/tex">S</script><span>. </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.519ex" height="3.154ex" viewBox="0 -991.6 1515.1 1358.2" role="img" focusable="false" style="vertical-align: -0.851ex;"><defs><path stroke-width="0" id="E2953-MJMAINB-6E" d="M40 442Q217 450 218 450H224V407L225 365Q233 378 245 391T289 422T362 448Q374 450 398 450Q428 450 448 447T491 434T529 402T551 346Q553 335 554 198V62H623V0H614Q596 3 489 3Q374 3 365 0H356V62H425V194V275Q425 348 416 373T371 399Q326 399 288 370T238 290Q236 281 235 171V62H304V0H295Q277 3 171 3Q64 3 46 0H37V62H106V210V303Q106 353 104 363T91 376Q77 380 50 380H37V442H40Z"></path><path stroke-width="0" id="E2953-MJMATHI-53" d="M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z"></path><path stroke-width="0" id="E2953-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E2953-MJMAINB-70" d="M32 442L123 446Q214 450 215 450H221V409Q222 409 229 413T251 423T284 436T328 446T382 450Q480 450 540 388T600 223Q600 128 539 61T361 -6H354Q292 -6 236 28L227 34V-132H296V-194H287Q269 -191 163 -191Q56 -191 38 -194H29V-132H98V113V284Q98 330 97 348T93 370T83 376Q69 380 42 380H29V442H32ZM457 224Q457 303 427 349T350 395Q282 395 235 352L227 345V104L233 97Q274 45 337 45Q383 45 420 86T457 224Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2953-MJMAINB-6E" x="0" y="0"></use><g transform="translate(639,359)"><use transform="scale(0.707)" xlink:href="#E2953-MJMATHI-53" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E2953-MJMATHI-6F" x="925" y="610"></use></g><use transform="scale(0.707)" xlink:href="#E2953-MJMAINB-70" x="903" y="-218"></use></g></svg></span><script type="math/tex">\bold{n}^{S^{o}}_\bold{p}</script><span> is the normal of </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.549ex" height="2.066ex" viewBox="0 -783.2 1097.6 889.4" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E2954-MJMATHI-53" d="M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z"></path><path stroke-width="0" id="E2954-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2954-MJMATHI-53" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2954-MJMATHI-6F" x="925" y="513"></use></g></svg></span><script type="math/tex">S^{o}</script><span> at point </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.484ex" height="1.824ex" viewBox="0 -522.8 639 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E2955-MJMAINB-70" d="M32 442L123 446Q214 450 215 450H221V409Q222 409 229 413T251 423T284 436T328 446T382 450Q480 450 540 388T600 223Q600 128 539 61T361 -6H354Q292 -6 236 28L227 34V-132H296V-194H287Q269 -191 163 -191Q56 -191 38 -194H29V-132H98V113V284Q98 330 97 348T93 370T83 376Q69 380 42 380H29V442H32ZM457 224Q457 303 427 349T350 395Q282 395 235 352L227 345V104L233 97Q274 45 337 45Q383 45 420 86T457 224Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2955-MJMAINB-70" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{p}</script><span>. Our goal is to minimize </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="10.47ex" height="2.671ex" viewBox="0 -835.3 4507.9 1149.8" role="img" focusable="false" style="vertical-align: -0.73ex;"><defs><path stroke-width="0" id="E2956-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E2956-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2956-MJMATHI-53" d="M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z"></path><path stroke-width="0" id="E2956-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E2956-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E2956-MJMAINB-6F" d="M287 -5Q228 -5 182 10T109 48T63 102T39 161T32 219Q32 272 50 314T94 382T154 423T214 446T265 452H279Q319 452 326 451Q428 439 485 376T542 221Q542 156 514 108T442 33Q384 -5 287 -5ZM399 230V250Q399 280 398 298T391 338T372 372T338 392T282 401Q241 401 212 380Q190 363 183 334T175 230Q175 202 175 189T177 153T183 118T195 91T215 68T245 56T287 50Q348 50 374 84Q388 101 393 132T399 230Z"></path><path stroke-width="0" id="E2956-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2956-MJMATHI-64" x="0" y="0"></use><use xlink:href="#E2956-MJMAIN-28" x="523" y="0"></use><use xlink:href="#E2956-MJMATHI-53" x="912" y="0"></use><use xlink:href="#E2956-MJMAIN-2C" x="1557" y="0"></use><g transform="translate(2001,0)"><use xlink:href="#E2956-MJMATHI-53" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2956-MJMATHI-6F" x="925" y="513"></use></g><use xlink:href="#E2956-MJMAIN-2C" x="3099" y="0"></use><use xlink:href="#E2956-MJMAINB-6F" x="3543" y="0"></use><use xlink:href="#E2956-MJMAIN-29" x="4118" y="0"></use></g></svg></span><script type="math/tex">d(S, S^{o}, \bold{o})</script><span>.</span></p><h2><a name="discretization" class="md-header-anchor"></a><span>Discretization</span></h2><h4><a name="preserving-surface-similarity" class="md-header-anchor"></a><span>Preserving Surface Similarity</span></h4><p><span>When surface </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.498ex" height="2.066ex" viewBox="0 -783.2 645 889.4" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E2960-MJMATHI-53" d="M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2960-MJMATHI-53" x="0" y="0"></use></g></svg></span><script type="math/tex">S</script><span> is represented by a triangle mesh </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.441ex" height="1.945ex" viewBox="0 -783.2 1051 837.3" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E2985-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2985-MJMATHI-4D" x="0" y="0"></use></g></svg></span><script type="math/tex">M</script><span>, points </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.943ex" height="2.55ex" viewBox="-39 -835.3 836.5 1097.7" role="img" focusable="false" style="vertical-align: -0.609ex; margin-left: -0.091ex;"><defs><path stroke-width="0" id="E2959-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E2959-MJMAIN-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2959-MJMATHI-70" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2959-MJMAIN-2032" x="711" y="513"></use></g></svg></span><script type="math/tex">p'</script><span> on </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.498ex" height="2.066ex" viewBox="0 -783.2 645 889.4" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E2960-MJMATHI-53" d="M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2960-MJMATHI-53" x="0" y="0"></use></g></svg></span><script type="math/tex">S</script><span> are approximated by vertices </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.209ex" height="1.824ex" viewBox="0 -522.8 951 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3053-MJMAINB-76" d="M401 444Q413 441 495 441Q568 441 574 444H580V382H510L409 156Q348 18 339 6Q331 -4 320 -4Q318 -4 313 -4T303 -3H288Q273 -3 264 12T221 102Q206 135 197 156L96 382H26V444H34Q49 441 145 441Q252 441 270 444H279V382H231L284 264Q335 149 338 149Q338 150 389 264T442 381Q442 382 418 382H394V444H401Z"></path><path stroke-width="0" id="E3053-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3053-MJMAINB-76" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3053-MJMATHI-69" x="858" y="-213"></use></g></svg></span><script type="math/tex">\bold{v}_i</script><span>. Each vertex </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.209ex" height="1.824ex" viewBox="0 -522.8 951 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3053-MJMAINB-76" d="M401 444Q413 441 495 441Q568 441 574 444H580V382H510L409 156Q348 18 339 6Q331 -4 320 -4Q318 -4 313 -4T303 -3H288Q273 -3 264 12T221 102Q206 135 197 156L96 382H26V444H34Q49 441 145 441Q252 441 270 444H279V382H231L284 264Q335 149 338 149Q338 150 389 264T442 381Q442 382 418 382H394V444H401Z"></path><path stroke-width="0" id="E3053-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3053-MJMAINB-76" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3053-MJMATHI-69" x="858" y="-213"></use></g></svg></span><script type="math/tex">\bold{v}_i</script><span> can be written as:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n136" cid="n136" mdtype="math_block">
<div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display"><span class="MathJax_SVG" id="MathJax-Element-406-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="116.371ex" height="5.574ex" viewBox="0 -1460.3 50104 2399.8" role="img" focusable="false" style="vertical-align: -2.009ex; margin-bottom: -0.173ex; max-width: 100%;"><defs><path stroke-width="0" id="E2928-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2928-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E2928-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2928-MJMAINB-76" d="M401 444Q413 441 495 441Q568 441 574 444H580V382H510L409 156Q348 18 339 6Q331 -4 320 -4Q318 -4 313 -4T303 -3H288Q273 -3 264 12T221 102Q206 135 197 156L96 382H26V444H34Q49 441 145 441Q252 441 270 444H279V382H231L284 264Q335 149 338 149Q338 150 389 264T442 381Q442 382 418 382H394V444H401Z"></path><path stroke-width="0" id="E2928-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2928-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E2928-MJMAINB-6F" d="M287 -5Q228 -5 182 10T109 48T63 102T39 161T32 219Q32 272 50 314T94 382T154 423T214 446T265 452H279Q319 452 326 451Q428 439 485 376T542 221Q542 156 514 108T442 33Q384 -5 287 -5ZM399 230V250Q399 280 398 298T391 338T372 372T338 392T282 401Q241 401 212 380Q190 363 183 334T175 230Q175 202 175 189T177 153T183 118T195 91T215 68T245 56T287 50Q348 50 374 84Q388 101 393 132T399 230Z"></path><path stroke-width="0" id="E2928-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E2928-MJMAIN-2225" d="M133 736Q138 750 153 750Q164 750 170 739Q172 735 172 250T170 -239Q164 -250 152 -250Q144 -250 138 -244L137 -243Q133 -241 133 -179T132 250Q132 731 133 736ZM329 739Q334 750 346 750Q353 750 361 744L362 743Q366 741 366 679T367 250T367 -178T362 -243L361 -244Q355 -250 347 -250Q335 -250 329 -239Q327 -235 327 250T329 739Z"></path><path stroke-width="0" id="E2928-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E2928-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E2928-MJMAINB-5E" d="M207 632L287 694Q289 693 368 632T448 570T431 545T413 520Q410 520 350 559L287 597L224 559Q164 520 161 520Q160 520 143 544T126 570T207 632Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(48825,0)"><g id="mjx-eqn-2" transform="translate(0,105)"><use xlink:href="#E2928-MJMAIN-28"></use><use xlink:href="#E2928-MJMAIN-32" x="389" y="0"></use><use xlink:href="#E2928-MJMAIN-29" x="889" y="0"></use></g></g><g transform="translate(16752,0)"><g transform="translate(-15,0)"><g transform="translate(0,105)"><use xlink:href="#E2928-MJMAINB-76" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2928-MJMATHI-69" x="858" y="-213"></use><use xlink:href="#E2928-MJMAIN-3D" x="1228" y="0"></use><use xlink:href="#E2928-MJMAINB-6F" x="2284" y="0"></use><use xlink:href="#E2928-MJMAIN-2B" x="3081" y="0"></use><use xlink:href="#E2928-MJMAIN-2225" x="4081" y="0"></use><g transform="translate(4581,0)"><use xlink:href="#E2928-MJMAINB-76" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2928-MJMATHI-69" x="858" y="-213"></use></g><use xlink:href="#E2928-MJMAIN-2212" x="5755" y="0"></use><use xlink:href="#E2928-MJMAINB-6F" x="6755" y="0"></use><use xlink:href="#E2928-MJMAIN-2225" x="7330" y="0"></use><g transform="translate(7830,0)"><g transform="translate(120,0)"><rect stroke="none" width="3868" height="60" x="0" y="220"></rect><g transform="translate(559,676)"><use xlink:href="#E2928-MJMAINB-76" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2928-MJMATHI-69" x="858" y="-213"></use><use xlink:href="#E2928-MJMAIN-2212" x="1173" y="0"></use><use xlink:href="#E2928-MJMAINB-6F" x="2173" y="0"></use></g><g transform="translate(60,-721)"><use xlink:href="#E2928-MJMAIN-2225" x="0" y="0"></use><g transform="translate(500,0)"><use xlink:href="#E2928-MJMAINB-76" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2928-MJMATHI-69" x="858" y="-213"></use></g><use xlink:href="#E2928-MJMAIN-2212" x="1673" y="0"></use><use xlink:href="#E2928-MJMAINB-6F" x="2673" y="0"></use><use xlink:href="#E2928-MJMAIN-2225" x="3248" y="0"></use></g></g></g><use xlink:href="#E2928-MJMAIN-3D" x="12216" y="0"></use><use xlink:href="#E2928-MJMAINB-6F" x="13272" y="0"></use><use xlink:href="#E2928-MJMAIN-2B" x="14069" y="0"></use><g transform="translate(15069,0)"><use xlink:href="#E2928-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2928-MJMATHI-69" x="824" y="-213"></use></g><g transform="translate(15996,0)"><use xlink:href="#E2928-MJMAINB-76" x="0" y="0"></use><use xlink:href="#E2928-MJMAINB-5E" x="16" y="2"></use><use transform="scale(0.707)" xlink:href="#E2928-MJMATHI-69" x="858" y="-213"></use></g></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-406">\bold{v}_i = \bold{o} + \Vert \bold{v}_i - \bold{o} \Vert \frac{\bold{v}_i - \bold{o}}{\Vert \bold{v}_i - \bold{o} \Vert} = \bold{o} + \lambda_i \bold{\hat{v}}_i</script></div></div><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.209ex" height="2.429ex" viewBox="0 -783.2 951 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E2970-MJMAINB-76" d="M401 444Q413 441 495 441Q568 441 574 444H580V382H510L409 156Q348 18 339 6Q331 -4 320 -4Q318 -4 313 -4T303 -3H288Q273 -3 264 12T221 102Q206 135 197 156L96 382H26V444H34Q49 441 145 441Q252 441 270 444H279V382H231L284 264Q335 149 338 149Q338 150 389 264T442 381Q442 382 418 382H394V444H401Z"></path><path stroke-width="0" id="E2970-MJMAINB-5E" d="M207 632L287 694Q289 693 368 632T448 570T431 545T413 520Q410 520 350 559L287 597L224 559Q164 520 161 520Q160 520 143 544T126 570T207 632Z"></path><path stroke-width="0" id="E2970-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2970-MJMAINB-76" x="0" y="0"></use><use xlink:href="#E2970-MJMAINB-5E" x="16" y="2"></use><use transform="scale(0.707)" xlink:href="#E2970-MJMATHI-69" x="858" y="-213"></use></g></svg></span><script type="math/tex">\bold{\hat{v}}_i</script><span> is the unit vector pointing in the direction of </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.501ex" height="1.703ex" viewBox="0 -522.8 1507.6 733.2" role="img" focusable="false" style="vertical-align: -0.489ex;"><defs><path stroke-width="0" id="E2964-MJMAINB-6F" d="M287 -5Q228 -5 182 10T109 48T63 102T39 161T32 219Q32 272 50 314T94 382T154 423T214 446T265 452H279Q319 452 326 451Q428 439 485 376T542 221Q542 156 514 108T442 33Q384 -5 287 -5ZM399 230V250Q399 280 398 298T391 338T372 372T338 392T282 401Q241 401 212 380Q190 363 183 334T175 230Q175 202 175 189T177 153T183 118T195 91T215 68T245 56T287 50Q348 50 374 84Q388 101 393 132T399 230Z"></path><path stroke-width="0" id="E2964-MJMAINB-76" d="M401 444Q413 441 495 441Q568 441 574 444H580V382H510L409 156Q348 18 339 6Q331 -4 320 -4Q318 -4 313 -4T303 -3H288Q273 -3 264 12T221 102Q206 135 197 156L96 382H26V444H34Q49 441 145 441Q252 441 270 444H279V382H231L284 264Q335 149 338 149Q338 150 389 264T442 381Q442 382 418 382H394V444H401Z"></path><path stroke-width="0" id="E2964-MJMAINB-69" d="M72 610Q72 649 98 672T159 695Q193 693 217 670T241 610Q241 572 217 549T157 525Q120 525 96 548T72 610ZM46 442L136 446L226 450H232V62H294V0H286Q271 3 171 3Q67 3 49 0H40V62H109V209Q109 358 108 362Q103 380 55 380H43V442H46Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2964-MJMAINB-6F" x="0" y="0"></use><g transform="translate(575,0)"><use xlink:href="#E2964-MJMAINB-76" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2964-MJMAINB-69" x="858" y="-213"></use></g></g></svg></span><script type="math/tex">\bold{ov_i}</script><span>. </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.153ex" height="2.429ex" viewBox="0 -783.2 927 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3061-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3061-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3061-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3061-MJMATHI-69" x="824" y="-213"></use></g></svg></span><script type="math/tex">\lambda_i</script><span> measures the distance between </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.335ex" height="1.461ex" viewBox="0 -522.8 575 629" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E2966-MJMAINB-6F" d="M287 -5Q228 -5 182 10T109 48T63 102T39 161T32 219Q32 272 50 314T94 382T154 423T214 446T265 452H279Q319 452 326 451Q428 439 485 376T542 221Q542 156 514 108T442 33Q384 -5 287 -5ZM399 230V250Q399 280 398 298T391 338T372 372T338 392T282 401Q241 401 212 380Q190 363 183 334T175 230Q175 202 175 189T177 153T183 118T195 91T215 68T245 56T287 50Q348 50 374 84Q388 101 393 132T399 230Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2966-MJMAINB-6F" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{o}</script><span> and </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.209ex" height="1.824ex" viewBox="0 -522.8 951 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3053-MJMAINB-76" d="M401 444Q413 441 495 441Q568 441 574 444H580V382H510L409 156Q348 18 339 6Q331 -4 320 -4Q318 -4 313 -4T303 -3H288Q273 -3 264 12T221 102Q206 135 197 156L96 382H26V444H34Q49 441 145 441Q252 441 270 444H279V382H231L284 264Q335 149 338 149Q338 150 389 264T442 381Q442 382 418 382H394V444H401Z"></path><path stroke-width="0" id="E3053-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3053-MJMAINB-76" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3053-MJMATHI-69" x="858" y="-213"></use></g></svg></span><script type="math/tex">\bold{v}_i</script><span>. This representation is convenient because </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.441ex" height="1.945ex" viewBox="0 -783.2 1051 837.3" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E2985-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2985-MJMATHI-4D" x="0" y="0"></use></g></svg></span><script type="math/tex">M</script><span> (deformed mesh) and </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.526ex" height="1.945ex" viewBox="0 -783.2 1518.3 837.3" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E2987-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path stroke-width="0" id="E2987-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2987-MJMATHI-4D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2987-MJMATHI-6F" x="1520" y="513"></use></g></svg></span><script type="math/tex">M^o</script><span> (original mesh) share the same set of </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.209ex" height="2.429ex" viewBox="0 -783.2 951 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E2970-MJMAINB-76" d="M401 444Q413 441 495 441Q568 441 574 444H580V382H510L409 156Q348 18 339 6Q331 -4 320 -4Q318 -4 313 -4T303 -3H288Q273 -3 264 12T221 102Q206 135 197 156L96 382H26V444H34Q49 441 145 441Q252 441 270 444H279V382H231L284 264Q335 149 338 149Q338 150 389 264T442 381Q442 382 418 382H394V444H401Z"></path><path stroke-width="0" id="E2970-MJMAINB-5E" d="M207 632L287 694Q289 693 368 632T448 570T431 545T413 520Q410 520 350 559L287 597L224 559Q164 520 161 520Q160 520 143 544T126 570T207 632Z"></path><path stroke-width="0" id="E2970-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2970-MJMAINB-76" x="0" y="0"></use><use xlink:href="#E2970-MJMAINB-5E" x="16" y="2"></use><use transform="scale(0.707)" xlink:href="#E2970-MJMATHI-69" x="858" y="-213"></use></g></svg></span><script type="math/tex">\bold{\hat{v}}_i</script><span>. Their differences are entirely expressed by </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.153ex" height="2.429ex" viewBox="0 -783.2 927 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3061-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3061-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3061-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3061-MJMATHI-69" x="824" y="-213"></use></g></svg></span><script type="math/tex">\lambda_i</script><span> and </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.383ex" height="2.671ex" viewBox="0 -783.2 1025.9 1149.8" role="img" focusable="false" style="vertical-align: -0.851ex;"><defs><path stroke-width="0" id="E2972-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E2972-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E2972-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2972-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2972-MJMATHI-6F" x="824" y="498"></use><use transform="scale(0.707)" xlink:href="#E2972-MJMATHI-69" x="824" y="-429"></use></g></svg></span><script type="math/tex">\lambda_i^o</script><span>. Depth constraints for each vertex of </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.441ex" height="1.945ex" viewBox="0 -783.2 1051 837.3" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E2985-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2985-MJMATHI-4D" x="0" y="0"></use></g></svg></span><script type="math/tex">M</script><span> can be specified as a upper bound and a lower bound on </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.153ex" height="2.429ex" viewBox="0 -783.2 927 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3061-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3061-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3061-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3061-MJMATHI-69" x="824" y="-213"></use></g></svg></span><script type="math/tex">\lambda_i</script><span>:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n138" cid="n138" mdtype="math_block">
<div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display"><span class="MathJax_SVG" id="MathJax-Element-407-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="116.371ex" height="3.033ex" viewBox="0 -887.4 50104 1306.1" role="img" focusable="false" style="vertical-align: -0.732ex; margin-bottom: -0.24ex; max-width: 100%;"><defs><path stroke-width="0" id="E2929-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2929-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E2929-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2929-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E2929-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2929-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2929-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2929-MJMAIN-2264" d="M674 636Q682 636 688 630T694 615T687 601Q686 600 417 472L151 346L399 228Q687 92 691 87Q694 81 694 76Q694 58 676 56H670L382 192Q92 329 90 331Q83 336 83 348Q84 359 96 365Q104 369 382 500T665 634Q669 636 674 636ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E2929-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E2929-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(48825,0)"><g id="mjx-eqn-3" transform="translate(0,-5)"><use xlink:href="#E2929-MJMAIN-28"></use><use xlink:href="#E2929-MJMAIN-33" x="389" y="0"></use><use xlink:href="#E2929-MJMAIN-29" x="889" y="0"></use></g></g><g transform="translate(21401,0)"><g transform="translate(-15,0)"><g transform="translate(0,-5)"><use xlink:href="#E2929-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,352)"><use transform="scale(0.707)" xlink:href="#E2929-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2929-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2929-MJMATHI-6E" x="1223" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E2929-MJMATHI-69" x="824" y="-429"></use><use xlink:href="#E2929-MJMAIN-2264" x="2249" y="0"></use><g transform="translate(3305,0)"><use xlink:href="#E2929-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2929-MJMATHI-69" x="824" y="-213"></use></g><use xlink:href="#E2929-MJMAIN-2264" x="4510" y="0"></use><g transform="translate(5566,0)"><use xlink:href="#E2929-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,352)"><use transform="scale(0.707)" xlink:href="#E2929-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2929-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2929-MJMATHI-78" x="1406" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E2929-MJMATHI-69" x="824" y="-429"></use></g></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-407">\lambda^{min}_i \leq \lambda_i \leq \lambda^{max}_i</script></div></div><p><span>Using this representation, Eq. (1) can be discretized and linearized as:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n140" cid="n140" mdtype="math_block">
<div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-408-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="81.395ex" height="34.001ex" viewBox="0 -7554.1 35045 14639.4" role="img" focusable="false" style="vertical-align: -16.213ex; margin-bottom: -0.243ex; max-width: 100%;"><defs><path stroke-width="0" id="E2930-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E2930-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2930-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path stroke-width="0" id="E2930-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E2930-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E2930-MJMAINB-6F" d="M287 -5Q228 -5 182 10T109 48T63 102T39 161T32 219Q32 272 50 314T94 382T154 423T214 446T265 452H279Q319 452 326 451Q428 439 485 376T542 221Q542 156 514 108T442 33Q384 -5 287 -5ZM399 230V250Q399 280 398 298T391 338T372 372T338 392T282 401Q241 401 212 380Q190 363 183 334T175 230Q175 202 175 189T177 153T183 118T195 91T215 68T245 56T287 50Q348 50 374 84Q388 101 393 132T399 230Z"></path><path stroke-width="0" id="E2930-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2930-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E2930-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E2930-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2930-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E2930-MJMAINB-56" d="M592 686H604Q615 685 631 685T666 684T700 684T724 683Q829 683 835 686H843V624H744L611 315Q584 254 546 165Q492 40 482 19T461 -6L460 -7H409Q398 -4 391 9Q385 20 257 315L124 624H25V686H36Q57 683 190 683Q340 683 364 686H377V624H289L384 403L480 185L492 212Q504 240 529 298T575 405L670 624H582V686H592Z"></path><path stroke-width="0" id="E2930-MJMATHI-77" d="M580 385Q580 406 599 424T641 443Q659 443 674 425T690 368Q690 339 671 253Q656 197 644 161T609 80T554 12T482 -11Q438 -11 404 5T355 48Q354 47 352 44Q311 -11 252 -11Q226 -11 202 -5T155 14T118 53T104 116Q104 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Q21 293 29 315T52 366T96 418T161 441Q204 441 227 416T250 358Q250 340 217 250T184 111Q184 65 205 46T258 26Q301 26 334 87L339 96V119Q339 122 339 128T340 136T341 143T342 152T345 165T348 182T354 206T362 238T373 281Q402 395 406 404Q419 431 449 431Q468 431 475 421T483 402Q483 389 454 274T422 142Q420 131 420 107V100Q420 85 423 71T442 42T487 26Q558 26 600 148Q609 171 620 213T632 273Q632 306 619 325T593 357T580 385Z"></path><path stroke-width="0" id="E2930-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E2930-MJMATHI-41" d="M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z"></path><path stroke-width="0" id="E2930-MJMAIN-2225" d="M133 736Q138 750 153 750Q164 750 170 739Q172 735 172 250T170 -239Q164 -250 152 -250Q144 -250 138 -244L137 -243Q133 -241 133 -179T132 250Q132 731 133 736ZM329 739Q334 750 346 750Q353 750 361 744L362 743Q366 741 366 679T367 250T367 -178T362 -243L361 -244Q355 -250 347 -250Q335 -250 329 -239Q327 -235 327 250T329 739Z"></path><path stroke-width="0" id="E2930-MJMAINB-6E" d="M40 442Q217 450 218 450H224V407L225 365Q233 378 245 391T289 422T362 448Q374 450 398 450Q428 450 448 447T491 434T529 402T551 346Q553 335 554 198V62H623V0H614Q596 3 489 3Q374 3 365 0H356V62H425V194V275Q425 348 416 373T371 399Q326 399 288 370T238 290Q236 281 235 171V62H304V0H295Q277 3 171 3Q64 3 46 0H37V62H106V210V303Q106 353 104 363T91 376Q77 380 50 380H37V442H40Z"></path><path stroke-width="0" id="E2930-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E2930-MJMAINB-4C" d="M643 285Q641 280 629 148T612 4V0H39V62H147V624H39V686H51Q75 683 228 683Q415 685 425 686H439V624H304V62H352H378Q492 62 539 138Q551 156 558 178T569 214T576 255T581 289H643V285Z"></path><path stroke-width="0" id="E2930-MJMATHI-48" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 219 683Q260 681 355 681Q389 681 418 681T463 682T483 682Q499 682 499 672Q499 670 497 658Q492 641 487 638H485Q483 638 480 638T473 638T464 637T455 637Q416 636 405 634T387 623Q384 619 355 500Q348 474 340 442T328 395L324 380Q324 378 469 378H614L615 381Q615 384 646 504Q674 619 674 627T617 637Q594 637 587 639T580 648Q580 650 582 660Q586 677 588 679T604 682Q609 682 646 681T740 680Q802 680 835 681T871 682Q888 682 888 672Q888 645 876 638H874Q872 638 869 638T862 638T853 637T844 637Q805 636 794 634T776 623Q773 618 704 340T634 58Q634 51 638 51Q646 48 692 46H723Q729 38 729 37T726 19Q722 6 716 0H701Q664 2 567 2Q533 2 504 2T458 2T437 1Q420 1 420 10Q420 15 423 24Q428 43 433 45Q437 46 448 46H454Q481 46 514 49Q520 50 522 50T528 55T534 64T540 82T547 110T558 153Q565 181 569 198Q602 330 602 331T457 332H312L279 197Q245 63 245 58Q245 51 253 49T303 46H334Q340 38 340 37T337 19Q333 6 327 0H312Q275 2 178 2Q144 2 115 2T69 2T48 1Q31 1 31 10Q31 12 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E2930-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E2930-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E2930-MJMAINB-5E" d="M207 632L287 694Q289 693 368 632T448 570T431 545T413 520Q410 520 350 559L287 597L224 559Q164 520 161 520Q160 520 143 544T126 570T207 632Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,6530)"><use xlink:href="#E2930-MJMATHI-64" x="0" y="0"></use><use xlink:href="#E2930-MJMAIN-28" x="523" y="0"></use><use xlink:href="#E2930-MJMATHI-4D" x="912" y="0"></use><use xlink:href="#E2930-MJMAIN-2C" x="1963" y="0"></use><g transform="translate(2407,0)"><use xlink:href="#E2930-MJMATHI-4D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="1520" y="583"></use></g><use xlink:href="#E2930-MJMAIN-2C" x="3925" y="0"></use><use xlink:href="#E2930-MJMAINB-6F" x="4370" y="0"></use><use xlink:href="#E2930-MJMAIN-29" x="4945" y="0"></use><use xlink:href="#E2930-MJMAIN-3D" x="5612" y="0"></use><g transform="translate(6668,0)"><use xlink:href="#E2930-MJSZ2-2211" x="0" y="0"></use><g transform="translate(56,-1102)"><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-2208" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAINB-56" x="1012" y="0"></use></g></g><g transform="translate(8278,0)"><use xlink:href="#E2930-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-32" x="1012" y="487"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1012" y="-429"></use></g><g transform="translate(9448,0)"><use xlink:href="#E2930-MJMATHI-41" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1060" y="-213"></use></g><use xlink:href="#E2930-MJMAIN-2225" x="10542" y="0"></use><g transform="translate(11042,0)"><use xlink:href="#E2930-MJMAINB-6E" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="903" y="-213"></use></g><use xlink:href="#E2930-MJMAIN-2212" x="12247" y="0"></use><g transform="translate(13247,0)"><use xlink:href="#E2930-MJMAINB-6E" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="903" y="498"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="903" y="-429"></use></g><g transform="translate(14329,0)"><use xlink:href="#E2930-MJMAIN-2225" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-32" x="707" y="583"></use></g></g></g><g transform="translate(15268,0)"><g transform="translate(0,3529)"><use xlink:href="#E2930-MJMAIN-3D" x="277" y="0"></use><g transform="translate(1333,0)"><use xlink:href="#E2930-MJSZ2-2211" x="0" y="0"></use><g transform="translate(56,-1102)"><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-2208" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAINB-56" x="1012" y="0"></use></g></g><g transform="translate(2944,0)"><use xlink:href="#E2930-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-32" x="1012" y="487"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1012" y="-429"></use></g><g transform="translate(4113,0)"><use xlink:href="#E2930-MJMATHI-41" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1060" y="-213"></use></g><use xlink:href="#E2930-MJMAIN-2225" x="5207" y="0"></use><g transform="translate(5707,0)"><g transform="translate(120,0)"><rect stroke="none" width="2802" height="60" x="0" y="220"></rect><g transform="translate(60,720)"><use xlink:href="#E2930-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E2930-MJMAINB-4C" x="389" y="0"></use><use xlink:href="#E2930-MJMAINB-56" x="1081" y="0"></use><g transform="translate(1950,0)"><use xlink:href="#E2930-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="550" y="-213"></use></g></g><g transform="translate(814,-686)"><use xlink:href="#E2930-MJMATHI-48" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1175" y="-213"></use></g></g></g><use xlink:href="#E2930-MJMAIN-2212" x="8972" y="0"></use><g transform="translate(9750,0)"><g transform="translate(342,0)"><rect stroke="none" width="3688" height="60" x="0" y="220"></rect><g transform="translate(60,720)"><use xlink:href="#E2930-MJMAIN-28" x="0" y="0"></use><g transform="translate(389,0)"><use xlink:href="#E2930-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="978" y="584"></use></g><g transform="translate(1523,0)"><use xlink:href="#E2930-MJMAINB-56" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="1228" y="584"></use></g><g transform="translate(2835,0)"><use xlink:href="#E2930-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="550" y="-213"></use></g></g><g transform="translate(1170,-686)"><use xlink:href="#E2930-MJMATHI-48" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="1280" y="498"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1175" y="-429"></use></g></g></g><g transform="translate(13901,0)"><use xlink:href="#E2930-MJMAIN-2225" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-32" x="707" y="583"></use></g></g><g transform="translate(0,340)"><use xlink:href="#E2930-MJMAIN-3D" x="277" y="0"></use><g transform="translate(1333,0)"><use xlink:href="#E2930-MJSZ2-2211" x="0" y="0"></use><g transform="translate(56,-1102)"><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-2208" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAINB-56" x="1012" y="0"></use></g></g><g transform="translate(2944,0)"><use xlink:href="#E2930-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-32" x="1012" y="487"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1012" y="-429"></use></g><g transform="translate(4113,0)"><use xlink:href="#E2930-MJMATHI-41" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1060" y="-213"></use></g><use xlink:href="#E2930-MJMAIN-2225" x="5207" y="0"></use><g transform="translate(5707,0)"><g transform="translate(120,0)"><rect stroke="none" width="4197" height="60" x="0" y="220"></rect><g transform="translate(60,720)"><use xlink:href="#E2930-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E2930-MJMAINB-4C" x="389" y="0"></use><g transform="translate(1081,0)"><use xlink:href="#E2930-MJMAINB-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-3BB" x="1247" y="-213"></use></g><g transform="translate(2475,0)"><use xlink:href="#E2930-MJMAINB-56" x="0" y="0"></use><use xlink:href="#E2930-MJMAINB-5E" x="147" y="244"></use></g><g transform="translate(3344,0)"><use xlink:href="#E2930-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="550" y="-213"></use></g></g><g transform="translate(1511,-686)"><use xlink:href="#E2930-MJMATHI-48" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1175" y="-213"></use></g></g></g><use xlink:href="#E2930-MJMAIN-2212" x="10367" y="0"></use><g transform="translate(11145,0)"><g transform="translate(342,0)"><rect stroke="none" width="4953" height="60" x="0" y="220"></rect><g transform="translate(60,720)"><use xlink:href="#E2930-MJMAIN-28" x="0" y="0"></use><g transform="translate(389,0)"><use xlink:href="#E2930-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="978" y="584"></use></g><g transform="translate(1523,0)"><use xlink:href="#E2930-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-174)"><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E2930-MJMATHI-6F" x="824" y="595"></use></g></g><g transform="translate(3231,0)"><use xlink:href="#E2930-MJMAINB-56" x="0" y="0"></use><use xlink:href="#E2930-MJMAINB-5E" x="147" y="244"></use></g><g transform="translate(4100,0)"><use xlink:href="#E2930-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="550" y="-213"></use></g></g><g transform="translate(1802,-686)"><use xlink:href="#E2930-MJMATHI-48" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="1280" y="498"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1175" y="-429"></use></g></g></g><g transform="translate(16560,0)"><use xlink:href="#E2930-MJMAIN-2225" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-32" x="707" y="583"></use></g></g><g transform="translate(0,-2849)"><use xlink:href="#E2930-MJMAIN-3D" x="277" y="0"></use><g transform="translate(1333,0)"><use xlink:href="#E2930-MJSZ2-2211" x="0" y="0"></use><g transform="translate(56,-1102)"><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-2208" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAINB-56" x="1012" y="0"></use></g></g><g transform="translate(2944,0)"><use xlink:href="#E2930-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-32" x="1012" y="487"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1012" y="-429"></use></g><g transform="translate(4113,0)"><use xlink:href="#E2930-MJMATHI-41" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="1060" y="498"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1060" y="-429"></use></g><use xlink:href="#E2930-MJMAIN-2225" x="5306" y="0"></use><g transform="translate(5806,0)"><g transform="translate(120,0)"><rect stroke="none" width="4640" height="60" x="0" y="220"></rect><g transform="translate(60,720)"><use xlink:href="#E2930-MJMAIN-28" x="0" y="0"></use><g transform="translate(389,0)"><use xlink:href="#E2930-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="978" y="584"></use></g><g transform="translate(1523,0)"><use xlink:href="#E2930-MJMAINB-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-3BB" x="1247" y="-213"></use></g><g transform="translate(2918,0)"><use xlink:href="#E2930-MJMAINB-56" x="0" y="0"></use><use xlink:href="#E2930-MJMAINB-5E" x="147" y="244"></use></g><g transform="translate(3787,0)"><use xlink:href="#E2930-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="550" y="-213"></use></g></g><g transform="translate(1646,-686)"><use xlink:href="#E2930-MJMATHI-48" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="1280" y="498"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1175" y="-429"></use></g></g></g><use xlink:href="#E2930-MJMAIN-2212" x="10909" y="0"></use><g transform="translate(11687,0)"><g transform="translate(342,0)"><rect stroke="none" width="4953" height="60" x="0" y="220"></rect><g transform="translate(60,720)"><use xlink:href="#E2930-MJMAIN-28" x="0" y="0"></use><g transform="translate(389,0)"><use xlink:href="#E2930-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="978" y="584"></use></g><g transform="translate(1523,0)"><use xlink:href="#E2930-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-174)"><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E2930-MJMATHI-6F" x="824" y="595"></use></g></g><g transform="translate(3231,0)"><use xlink:href="#E2930-MJMAINB-56" x="0" y="0"></use><use xlink:href="#E2930-MJMAINB-5E" x="147" y="244"></use></g><g transform="translate(4100,0)"><use xlink:href="#E2930-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="550" y="-213"></use></g></g><g transform="translate(1802,-686)"><use xlink:href="#E2930-MJMATHI-48" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="1280" y="498"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1175" y="-429"></use></g></g></g><g transform="translate(17102,0)"><g transform="translate(120,0)"><rect stroke="none" width="1145" height="60" x="0" y="220"></rect><g transform="translate(109,676)"><use xlink:href="#E2930-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="824" y="-213"></use></g><g transform="translate(60,-686)"><use xlink:href="#E2930-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="824" y="498"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="824" y="-429"></use></g></g></g><g transform="translate(18488,0)"><use xlink:href="#E2930-MJMAIN-2225" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-32" x="707" y="583"></use></g></g><g transform="translate(0,-5750)"><use xlink:href="#E2930-MJMAIN-3D" x="277" y="0"></use><g transform="translate(1333,0)"><use xlink:href="#E2930-MJSZ2-2211" x="0" y="0"></use><g transform="translate(56,-1102)"><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-2208" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAINB-56" x="1012" y="0"></use></g></g><g transform="translate(2944,0)"><use xlink:href="#E2930-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-32" x="1012" y="487"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1012" y="-429"></use></g><g transform="translate(4113,0)"><use xlink:href="#E2930-MJMATHI-41" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="1060" y="498"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="1060" y="-429"></use></g><use xlink:href="#E2930-MJMAIN-2225" x="5306" y="0"></use><use xlink:href="#E2930-MJMAIN-28" x="5806" y="0"></use><g transform="translate(6195,0)"><use xlink:href="#E2930-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="978" y="584"></use></g><g transform="translate(7330,0)"><use xlink:href="#E2930-MJMAINB-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-3BB" x="1247" y="-213"></use></g><g transform="translate(8724,0)"><use xlink:href="#E2930-MJMAINB-56" x="0" y="0"></use><use xlink:href="#E2930-MJMAINB-5E" x="147" y="244"></use></g><g transform="translate(9593,0)"><use xlink:href="#E2930-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="550" y="-213"></use></g><use xlink:href="#E2930-MJMAIN-2212" x="10549" y="0"></use><use xlink:href="#E2930-MJMAIN-28" x="11549" y="0"></use><g transform="translate(11938,0)"><use xlink:href="#E2930-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="978" y="584"></use></g><g transform="translate(13073,0)"><use xlink:href="#E2930-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-174)"><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E2930-MJMATHI-6F" x="824" y="595"></use></g></g><g transform="translate(14780,0)"><use xlink:href="#E2930-MJMAINB-56" x="0" y="0"></use><use xlink:href="#E2930-MJMAINB-5E" x="147" y="244"></use></g><g transform="translate(15649,0)"><use xlink:href="#E2930-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="550" y="-213"></use></g><g transform="translate(16382,0)"><g transform="translate(120,0)"><rect stroke="none" width="1145" height="60" x="0" y="220"></rect><g transform="translate(109,676)"><use xlink:href="#E2930-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="824" y="-213"></use></g><g transform="translate(60,-686)"><use xlink:href="#E2930-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-6F" x="824" y="498"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMATHI-69" x="824" y="-429"></use></g></g></g><g transform="translate(17768,0)"><use xlink:href="#E2930-MJMAIN-2225" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2930-MJMAIN-32" x="707" y="583"></use></g></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-408">\begin{align*}
d(M, M^o, \bold{o}) = \sum_{i \in \bold{V}} w_i^2 A_i \Vert\bold{n}_i - \bold{n}_i^o \Vert^2 \\
&= \sum_{i \in \bold{V}} w_i^2 A_i \Vert\frac{(\bold{L} \bold{V})_i}{H_i} - \frac{(\bold{L}^o \bold{V}^o)_i}{H_i^o} \Vert^2 \\
&= \sum_{i \in \bold{V}} w_i^2 A_i \Vert\frac{(\bold{L} \bold{D}_\lambda \bold{\hat{V}})_i}{H_i} - \frac{(\bold{L}^o \bold{D}_{\lambda^o} \bold{\hat{V}})_i}{H_i^o} \Vert^2 \\
&= \sum_{i \in \bold{V}} w_i^2 A_i^o \Vert\frac{(\bold{L}^o \bold{D}_\lambda \bold{\hat{V}})_i}{H_i^o} - \frac{(\bold{L}^o \bold{D}_{\lambda^o} \bold{\hat{V}})_i}{H_i^o} \frac{\lambda_i}{\lambda_i^o}\Vert^2 \\
&= \sum_{i \in \bold{V}} w_i^2 A_i^o \Vert(\bold{L}^o \bold{D}_\lambda \bold{\hat{V}})_i - (\bold{L}^o \bold{D}_{\lambda^o} \bold{\hat{V}})_i \frac{\lambda_i}{\lambda_i^o}\Vert^2 \\
\end{align*}</script></div></div><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.541ex" height="2.429ex" viewBox="0 -783.2 1094 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E2975-MJMATHI-41" d="M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z"></path><path stroke-width="0" id="E2975-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2975-MJMATHI-41" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2975-MJMATHI-69" x="1060" y="-213"></use></g></svg></span><script type="math/tex">A_i</script><span> is the Voronoi area ssociated with </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.209ex" height="1.824ex" viewBox="0 -522.8 951 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3053-MJMAINB-76" d="M401 444Q413 441 495 441Q568 441 574 444H580V382H510L409 156Q348 18 339 6Q331 -4 320 -4Q318 -4 313 -4T303 -3H288Q273 -3 264 12T221 102Q206 135 197 156L96 382H26V444H34Q49 441 145 441Q252 441 270 444H279V382H231L284 264Q335 149 338 149Q338 150 389 264T442 381Q442 382 418 382H394V444H401Z"></path><path stroke-width="0" id="E3053-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3053-MJMAINB-76" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3053-MJMATHI-69" x="858" y="-213"></use></g></svg></span><script type="math/tex">\bold{v}_i</script><span> and can be obtained from the mass matrix coefficients. </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.462ex" height="1.824ex" viewBox="0 -522.8 1060 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E2979-MJMATHI-77" d="M580 385Q580 406 599 424T641 443Q659 443 674 425T690 368Q690 339 671 253Q656 197 644 161T609 80T554 12T482 -11Q438 -11 404 5T355 48Q354 47 352 44Q311 -11 252 -11Q226 -11 202 -5T155 14T118 53T104 116Q104 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Q21 293 29 315T52 366T96 418T161 441Q204 441 227 416T250 358Q250 340 217 250T184 111Q184 65 205 46T258 26Q301 26 334 87L339 96V119Q339 122 339 128T340 136T341 143T342 152T345 165T348 182T354 206T362 238T373 281Q402 395 406 404Q419 431 449 431Q468 431 475 421T483 402Q483 389 454 274T422 142Q420 131 420 107V100Q420 85 423 71T442 42T487 26Q558 26 600 148Q609 171 620 213T632 273Q632 306 619 325T593 357T580 385Z"></path><path stroke-width="0" id="E2979-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2979-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2979-MJMATHI-69" x="1012" y="-213"></use></g></svg></span><script type="math/tex">w_i</script><span> are weights denoting the relative importance of </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.209ex" height="1.824ex" viewBox="0 -522.8 951 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3053-MJMAINB-76" d="M401 444Q413 441 495 441Q568 441 574 444H580V382H510L409 156Q348 18 339 6Q331 -4 320 -4Q318 -4 313 -4T303 -3H288Q273 -3 264 12T221 102Q206 135 197 156L96 382H26V444H34Q49 441 145 441Q252 441 270 444H279V382H231L284 264Q335 149 338 149Q338 150 389 264T442 381Q442 382 418 382H394V444H401Z"></path><path stroke-width="0" id="E3053-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3053-MJMAINB-76" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3053-MJMATHI-69" x="858" y="-213"></use></g></svg></span><script type="math/tex">\bold{v}_i</script><span>. Visible vertices from the viewpoint are given more weight than occluded vertices. By default </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.462ex" height="1.824ex" viewBox="0 -522.8 1060 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E2979-MJMATHI-77" d="M580 385Q580 406 599 424T641 443Q659 443 674 425T690 368Q690 339 671 253Q656 197 644 161T609 80T554 12T482 -11Q438 -11 404 5T355 48Q354 47 352 44Q311 -11 252 -11Q226 -11 202 -5T155 14T118 53T104 116Q104 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Q21 293 29 315T52 366T96 418T161 441Q204 441 227 416T250 358Q250 340 217 250T184 111Q184 65 205 46T258 26Q301 26 334 87L339 96V119Q339 122 339 128T340 136T341 143T342 152T345 165T348 182T354 206T362 238T373 281Q402 395 406 404Q419 431 449 431Q468 431 475 421T483 402Q483 389 454 274T422 142Q420 131 420 107V100Q420 85 423 71T442 42T487 26Q558 26 600 148Q609 171 620 213T632 273Q632 306 619 325T593 357T580 385Z"></path><path stroke-width="0" id="E2979-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2979-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2979-MJMATHI-69" x="1012" y="-213"></use></g></svg></span><script type="math/tex">w_i</script><span> are 1. </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.607ex" height="1.945ex" viewBox="0 -783.2 692 837.3" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E2980-MJMAINB-4C" d="M643 285Q641 280 629 148T612 4V0H39V62H147V624H39V686H51Q75 683 228 683Q415 685 425 686H439V624H304V62H352H378Q492 62 539 138Q551 156 558 178T569 214T576 255T581 289H643V285Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2980-MJMAINB-4C" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{L}</script><span> is the discrete laplace operator of mesh </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.441ex" height="1.945ex" viewBox="0 -783.2 1051 837.3" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E2985-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2985-MJMATHI-4D" x="0" y="0"></use></g></svg></span><script type="math/tex">M</script><span>. </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.238ex" height="2.429ex" viewBox="0 -783.2 1394.2 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E2994-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E2994-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2994-MJMAINB-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2994-MJMATHI-3BB" x="1247" y="-213"></use></g></svg></span><script type="math/tex">\bold{D}_\lambda</script><span> is a diagonal matrix with entries </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.153ex" height="2.429ex" viewBox="0 -783.2 927 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3061-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3061-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3061-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3061-MJMATHI-69" x="824" y="-213"></use></g></svg></span><script type="math/tex">\lambda_i</script><span> on the diagonal. </span></p><blockquote><p><span>We follow these conventions for notations:</span></p><ul><li><span>If </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.018ex" height="1.945ex" viewBox="0 -783.2 869 837.3" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E2984-MJMAINB-58" d="M327 0Q306 3 174 3Q52 3 43 0H33V62H98L162 63L360 333L157 624H48V686H59Q80 683 217 683Q368 683 395 686H408V624H335L393 540L452 458L573 623Q573 624 528 624H483V686H494Q515 683 646 683Q769 683 778 686H787V624H658L575 511Q493 398 493 397L508 376Q522 356 553 312T611 229L727 62H835V0H824Q803 3 667 3Q516 3 489 0H476V62H513L549 63L401 274L247 63Q247 62 292 62H338V0H327Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2984-MJMAINB-58" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{X}</script><span> is a property/operator for mesh </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.441ex" height="1.945ex" viewBox="0 -783.2 1051 837.3" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E2985-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2985-MJMATHI-4D" x="0" y="0"></use></g></svg></span><script type="math/tex">M</script><span>, then </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.047ex" height="1.945ex" viewBox="0 -783.2 1311.9 837.3" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E2986-MJMAINB-58" d="M327 0Q306 3 174 3Q52 3 43 0H33V62H98L162 63L360 333L157 624H48V686H59Q80 683 217 683Q368 683 395 686H408V624H335L393 540L452 458L573 623Q573 624 528 624H483V686H494Q515 683 646 683Q769 683 778 686H787V624H658L575 511Q493 398 493 397L508 376Q522 356 553 312T611 229L727 62H835V0H824Q803 3 667 3Q516 3 489 0H476V62H513L549 63L401 274L247 63Q247 62 292 62H338V0H327Z"></path><path stroke-width="0" id="E2986-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2986-MJMAINB-58" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2986-MJMATHI-6F" x="1228" y="584"></use></g></svg></span><script type="math/tex">\bold{X}^o</script><span> is the corresponding property/operator for mesh </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.526ex" height="1.945ex" viewBox="0 -783.2 1518.3 837.3" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E2987-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path stroke-width="0" id="E2987-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2987-MJMATHI-4D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2987-MJMATHI-6F" x="1520" y="513"></use></g></svg></span><script type="math/tex">M^o</script><span>.</span></li><li><span>If </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.41ex" height="1.34ex" viewBox="0 -522.8 607 576.9" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E3035-MJMAINB-78" d="M227 0Q212 3 121 3Q40 3 28 0H21V62H117L245 213L109 382H26V444H34Q49 441 143 441Q247 441 265 444H274V382H246L281 339Q315 297 316 297Q320 297 354 341L389 382H352V444H360Q375 441 466 441Q547 441 559 444H566V382H471L355 246L504 63L545 62H586V0H578Q563 3 469 3Q365 3 347 0H338V62H366Q366 63 326 112T285 163L198 63L217 62H235V0H227Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3035-MJMAINB-78" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{x}</script><span> is a vector, then </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.278ex" height="2.308ex" viewBox="0 -783.2 1411.2 993.6" role="img" focusable="false" style="vertical-align: -0.489ex;"><defs><path stroke-width="0" id="E2989-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E2989-MJMAINB-78" d="M227 0Q212 3 121 3Q40 3 28 0H21V62H117L245 213L109 382H26V444H34Q49 441 143 441Q247 441 265 444H274V382H246L281 339Q315 297 316 297Q320 297 354 341L389 382H352V444H360Q375 441 466 441Q547 441 559 444H566V382H471L355 246L504 63L545 62H586V0H578Q563 3 469 3Q365 3 347 0H338V62H366Q366 63 326 112T285 163L198 63L217 62H235V0H227Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2989-MJMAINB-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2989-MJMAINB-78" x="1247" y="-213"></use></g></svg></span><script type="math/tex">\bold{D_x}</script><span> is a diagonal matrix with </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.41ex" height="1.34ex" viewBox="0 -522.8 607 576.9" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E3035-MJMAINB-78" d="M227 0Q212 3 121 3Q40 3 28 0H21V62H117L245 213L109 382H26V444H34Q49 441 143 441Q247 441 265 444H274V382H246L281 339Q315 297 316 297Q320 297 354 341L389 382H352V444H360Q375 441 466 441Q547 441 559 444H566V382H471L355 246L504 63L545 62H586V0H578Q563 3 469 3Q365 3 347 0H338V62H366Q366 63 326 112T285 163L198 63L217 62H235V0H227Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3035-MJMAINB-78" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{x}</script><span> on the diagonal. </span></li></ul></blockquote><p><span>Now our goal is to find </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.354ex" height="2.066ex" viewBox="0 -783.2 583 889.4" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E3062-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3062-MJMATHI-3BB" x="0" y="0"></use></g></svg></span><script type="math/tex">\lambda</script><span> such that it minimizes </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="12.39ex" height="2.671ex" viewBox="0 -835.3 5334.6 1149.8" role="img" focusable="false" style="vertical-align: -0.73ex;"><defs><path stroke-width="0" id="E2992-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E2992-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2992-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path stroke-width="0" id="E2992-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E2992-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E2992-MJMAINB-6F" d="M287 -5Q228 -5 182 10T109 48T63 102T39 161T32 219Q32 272 50 314T94 382T154 423T214 446T265 452H279Q319 452 326 451Q428 439 485 376T542 221Q542 156 514 108T442 33Q384 -5 287 -5ZM399 230V250Q399 280 398 298T391 338T372 372T338 392T282 401Q241 401 212 380Q190 363 183 334T175 230Q175 202 175 189T177 153T183 118T195 91T215 68T245 56T287 50Q348 50 374 84Q388 101 393 132T399 230Z"></path><path stroke-width="0" id="E2992-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2992-MJMATHI-64" x="0" y="0"></use><use xlink:href="#E2992-MJMAIN-28" x="523" y="0"></use><use xlink:href="#E2992-MJMATHI-4D" x="912" y="0"></use><use xlink:href="#E2992-MJMAIN-2C" x="1963" y="0"></use><g transform="translate(2407,0)"><use xlink:href="#E2992-MJMATHI-4D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2992-MJMATHI-6F" x="1520" y="513"></use></g><use xlink:href="#E2992-MJMAIN-2C" x="3925" y="0"></use><use xlink:href="#E2992-MJMAINB-6F" x="4370" y="0"></use><use xlink:href="#E2992-MJMAIN-29" x="4945" y="0"></use></g></svg></span><script type="math/tex">d(M, M^o, \bold{o})</script><span>. To do this, we extract the unknown variable </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.354ex" height="1.999ex" viewBox="0 -768.4 583 860.6" role="img" focusable="false" style="vertical-align: -0.214ex;"><defs><path stroke-width="0" id="E3060-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3060-MJMATHI-3BB" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{\lambda}</script><span> from </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.238ex" height="2.429ex" viewBox="0 -783.2 1394.2 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E2994-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E2994-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2994-MJMAINB-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2994-MJMATHI-3BB" x="1247" y="-213"></use></g></svg></span><script type="math/tex">\bold{D}_\lambda</script><span>. The above equation can be further vectorized as:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n150" cid="n150" mdtype="math_block">
<div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display"><span class="MathJax_SVG" id="MathJax-Element-409-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="116.371ex" height="3.517ex" viewBox="0 -991.6 50104 1514.4" role="img" focusable="false" style="vertical-align: -1.214ex; max-width: 100%;"><defs><path stroke-width="0" id="E2931-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2931-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E2931-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2931-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E2931-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path stroke-width="0" id="E2931-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E2931-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E2931-MJMAINB-6F" d="M287 -5Q228 -5 182 10T109 48T63 102T39 161T32 219Q32 272 50 314T94 382T154 423T214 446T265 452H279Q319 452 326 451Q428 439 485 376T542 221Q542 156 514 108T442 33Q384 -5 287 -5ZM399 230V250Q399 280 398 298T391 338T372 372T338 392T282 401Q241 401 212 380Q190 363 183 334T175 230Q175 202 175 189T177 153T183 118T195 91T215 68T245 56T287 50Q348 50 374 84Q388 101 393 132T399 230Z"></path><path stroke-width="0" id="E2931-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E2931-MJMAIN-2225" d="M133 736Q138 750 153 750Q164 750 170 739Q172 735 172 250T170 -239Q164 -250 152 -250Q144 -250 138 -244L137 -243Q133 -241 133 -179T132 250Q132 731 133 736ZM329 739Q334 750 346 750Q353 750 361 744L362 743Q366 741 366 679T367 250T367 -178T362 -243L361 -244Q355 -250 347 -250Q335 -250 329 -239Q327 -235 327 250T329 739Z"></path><path stroke-width="0" id="E2931-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E2931-MJMATHI-41" d="M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z"></path><path stroke-width="0" id="E2931-MJMAIN-221A" d="M95 178Q89 178 81 186T72 200T103 230T169 280T207 309Q209 311 212 311H213Q219 311 227 294T281 177Q300 134 312 108L397 -77Q398 -77 501 136T707 565T814 786Q820 800 834 800Q841 800 846 794T853 782V776L620 293L385 -193Q381 -200 366 -200Q357 -200 354 -197Q352 -195 256 15L160 225L144 214Q129 202 113 190T95 178Z"></path><path stroke-width="0" id="E2931-MJMATHI-77" d="M580 385Q580 406 599 424T641 443Q659 443 674 425T690 368Q690 339 671 253Q656 197 644 161T609 80T554 12T482 -11Q438 -11 404 5T355 48Q354 47 352 44Q311 -11 252 -11Q226 -11 202 -5T155 14T118 53T104 116Q104 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Q21 293 29 315T52 366T96 418T161 441Q204 441 227 416T250 358Q250 340 217 250T184 111Q184 65 205 46T258 26Q301 26 334 87L339 96V119Q339 122 339 128T340 136T341 143T342 152T345 165T348 182T354 206T362 238T373 281Q402 395 406 404Q419 431 449 431Q468 431 475 421T483 402Q483 389 454 274T422 142Q420 131 420 107V100Q420 85 423 71T442 42T487 26Q558 26 600 148Q609 171 620 213T632 273Q632 306 619 325T593 357T580 385Z"></path><path stroke-width="0" id="E2931-MJMAINB-4C" d="M643 285Q641 280 629 148T612 4V0H39V62H147V624H39V686H51Q75 683 228 683Q415 685 425 686H439V624H304V62H352H378Q492 62 539 138Q551 156 558 178T569 214T576 255T581 289H643V285Z"></path><path stroke-width="0" id="E2931-MJMAINB-7E" d="M343 202Q320 202 278 225T215 249Q181 249 146 214L134 202L115 219Q111 222 106 226T98 234L96 236Q158 306 165 313Q199 344 230 344Q239 344 244 343Q262 339 300 318T359 297Q393 297 428 332L440 344L459 327Q463 324 468 320T476 312L478 310Q416 240 409 233Q375 202 343 202Z"></path><path stroke-width="0" id="E2931-MJMAINB-56" d="M592 686H604Q615 685 631 685T666 684T700 684T724 683Q829 683 835 686H843V624H744L611 315Q584 254 546 165Q492 40 482 19T461 -6L460 -7H409Q398 -4 391 9Q385 20 257 315L124 624H25V686H36Q57 683 190 683Q340 683 364 686H377V624H289L384 403L480 185L492 212Q504 240 529 298T575 405L670 624H582V686H592Z"></path><path stroke-width="0" id="E2931-MJMAINB-5E" d="M207 632L287 694Q289 693 368 632T448 570T431 545T413 520Q410 520 350 559L287 597L224 559Q164 520 161 520Q160 520 143 544T126 570T207 632Z"></path><path stroke-width="0" id="E2931-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E2931-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E2931-MJMAINB-53" d="M64 493Q64 582 120 636T264 696H272Q280 697 285 697Q380 697 454 645L480 669Q484 672 488 676T495 683T500 688T504 691T508 693T511 695T514 696T517 697T522 697Q536 697 539 691T542 652V577Q542 557 542 532T543 500Q543 472 540 465T524 458H511H505Q489 458 485 461T479 478Q472 529 449 564T393 614T336 634T287 639Q228 639 203 610T177 544Q177 517 195 493T247 457Q253 454 343 436T475 391Q574 326 574 207V200Q574 163 559 120Q517 12 389 -9Q380 -10 346 -10Q308 -10 275 -5T221 7T184 22T160 35T151 40L126 17Q122 14 118 10T111 3T106 -2T102 -5T98 -7T95 -9T92 -10T89 -11T84 -11Q70 -11 67 -4T64 35V108Q64 128 64 153T63 185Q63 203 63 211T69 223T77 227T94 228H100Q118 228 122 225T126 205Q130 125 193 88T345 51Q408 51 434 82T460 157Q460 196 439 221T388 257Q384 259 305 276T221 295Q155 313 110 366T64 493Z"></path><path stroke-width="0" id="E2931-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E2931-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E2931-MJMAINB-51" d="M64 339Q64 431 96 502T182 614T295 675T420 696Q469 696 481 695Q620 680 709 589T798 339Q798 255 768 184Q720 77 611 26L600 21Q635 -26 682 -26H696Q769 -26 769 0Q769 7 774 12T787 18Q805 18 805 -7V-13Q803 -64 785 -106T737 -171Q720 -183 697 -191Q687 -193 668 -193Q636 -193 613 -182T575 -144T552 -94T532 -27Q531 -23 530 -16T528 -6T526 -3L512 -5Q499 -7 477 -8T431 -10Q393 -10 382 -9Q238 8 151 97T64 339ZM326 80Q326 113 356 138T430 163Q492 163 542 100L553 86Q554 85 561 91T578 108Q637 179 637 330Q637 430 619 498T548 604Q500 641 425 641Q408 641 390 637T347 623T299 590T259 535Q226 469 226 338Q226 244 246 180T318 79L325 74Q326 74 326 80ZM506 58Q480 112 433 112Q412 112 395 104T378 77Q378 44 431 44Q480 44 506 58Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(48825,0)"><g id="mjx-eqn-4" transform="translate(0,-20)"><use xlink:href="#E2931-MJMAIN-28"></use><use xlink:href="#E2931-MJMAIN-34" x="389" y="0"></use><use xlink:href="#E2931-MJMAIN-29" x="889" y="0"></use></g></g><g transform="translate(13231,0)"><g transform="translate(-15,0)"><g transform="translate(0,-20)"><use xlink:href="#E2931-MJMATHI-64" x="0" y="0"></use><use xlink:href="#E2931-MJMAIN-28" x="523" y="0"></use><use xlink:href="#E2931-MJMATHI-4D" x="912" y="0"></use><use xlink:href="#E2931-MJMAIN-2C" x="1963" y="0"></use><g transform="translate(2407,0)"><use xlink:href="#E2931-MJMATHI-4D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2931-MJMATHI-6F" x="1520" y="583"></use></g><use xlink:href="#E2931-MJMAIN-2C" x="3925" y="0"></use><use xlink:href="#E2931-MJMAINB-6F" x="4370" y="0"></use><use xlink:href="#E2931-MJMAIN-29" x="4945" y="0"></use><use xlink:href="#E2931-MJMAIN-3D" x="5612" y="0"></use><use xlink:href="#E2931-MJMAIN-2225" x="6668" y="0"></use><g transform="translate(7168,0)"><use xlink:href="#E2931-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-322)"><use transform="scale(0.707)" xlink:href="#E2931-MJMAIN-221A" x="0" y="82"></use><rect stroke="none" width="843" height="42" x="589" y="581"></rect><g transform="translate(589,0)"><use transform="scale(0.707)" xlink:href="#E2931-MJMATHI-41" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E2931-MJMATHI-6F" x="1060" y="626"></use></g></g></g><g transform="translate(9582,0)"><use xlink:href="#E2931-MJMAINB-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2931-MJMATHI-77" x="1247" y="-213"></use></g><use xlink:href="#E2931-MJMAIN-28" x="11071" y="0"></use><g transform="translate(11460,0)"><use xlink:href="#E2931-MJMAINB-4C" x="0" y="0"></use><use xlink:href="#E2931-MJMAINB-7E" x="58" y="562"></use><use transform="scale(0.707)" xlink:href="#E2931-MJMATHI-6F" x="978" y="895"></use></g><g transform="translate(12594,0)"><use xlink:href="#E2931-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-342)"><use transform="scale(0.707)" xlink:href="#E2931-MJMAINB-56" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2931-MJMAINB-5E" x="147" y="276"></use></g></g><use xlink:href="#E2931-MJMAIN-2212" x="14413" y="0"></use><g transform="translate(15413,0)"><use xlink:href="#E2931-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-150)"><use transform="scale(0.707)" xlink:href="#E2931-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E2931-MJMATHI-3B8" x="978" y="-218"></use></g></g><use xlink:href="#E2931-MJMAIN-29" x="17190" y="0"></use><use xlink:href="#E2931-MJMAINB-53" x="17579" y="0"></use><use xlink:href="#E2931-MJMATHI-3BB" x="18218" y="0"></use><g transform="translate(18801,0)"><use xlink:href="#E2931-MJMAIN-2225" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2931-MJMAIN-32" x="707" y="583"></use></g><use xlink:href="#E2931-MJMAIN-3D" x="20032" y="0"></use><use xlink:href="#E2931-MJMAIN-2225" x="21088" y="0"></use><use xlink:href="#E2931-MJMAINB-51" x="21588" y="0"></use><use xlink:href="#E2931-MJMATHI-3BB" x="22452" y="0"></use><g transform="translate(23035,0)"><use xlink:href="#E2931-MJMAIN-2225" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2931-MJMAIN-32" x="707" y="583"></use></g></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-409">d(M, M^o, \bold{o}) = \Vert \bold{D}_\sqrt{A^o} \bold{D}_w (\bold{\tilde{L}}^o \bold{D_\hat{V}} - \bold{D}_{\bold{L}_\theta}) \bold{S} \bold{\lambda} \Vert^2
= \Vert \bold{Q} \bold{\lambda} \Vert^2</script></div></div><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n151" cid="n151" mdtype="math_block">
<div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display"><span class="MathJax_SVG" id="MathJax-Element-410-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="116.371ex" height="3.396ex" viewBox="0 -991.6 50104 1462.3" role="img" focusable="false" style="vertical-align: -1.093ex; max-width: 100%;"><defs><path stroke-width="0" id="E2932-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2932-MJMAIN-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path stroke-width="0" id="E2932-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2932-MJMAINB-4C" d="M643 285Q641 280 629 148T612 4V0H39V62H147V624H39V686H51Q75 683 228 683Q415 685 425 686H439V624H304V62H352H378Q492 62 539 138Q551 156 558 178T569 214T576 255T581 289H643V285Z"></path><path stroke-width="0" id="E2932-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E2932-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E2932-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E2932-MJMAINB-28" d="M103 166T103 251T121 412T165 541T225 639T287 708T341 750H356H361Q382 750 382 736Q382 732 365 714T323 661T274 576T232 439T214 250Q214 -62 381 -229Q382 -231 382 -234Q382 -249 360 -249H356H341Q314 -231 287 -207T226 -138T165 -41T121 89Z"></path><path stroke-width="0" id="E2932-MJMAINB-53" d="M64 493Q64 582 120 636T264 696H272Q280 697 285 697Q380 697 454 645L480 669Q484 672 488 676T495 683T500 688T504 691T508 693T511 695T514 696T517 697T522 697Q536 697 539 691T542 652V577Q542 557 542 532T543 500Q543 472 540 465T524 458H511H505Q489 458 485 461T479 478Q472 529 449 564T393 614T336 634T287 639Q228 639 203 610T177 544Q177 517 195 493T247 457Q253 454 343 436T475 391Q574 326 574 207V200Q574 163 559 120Q517 12 389 -9Q380 -10 346 -10Q308 -10 275 -5T221 7T184 22T160 35T151 40L126 17Q122 14 118 10T111 3T106 -2T102 -5T98 -7T95 -9T92 -10T89 -11T84 -11Q70 -11 67 -4T64 35V108Q64 128 64 153T63 185Q63 203 63 211T69 223T77 227T94 228H100Q118 228 122 225T126 205Q130 125 193 88T345 51Q408 51 434 82T460 157Q460 196 439 221T388 257Q384 259 305 276T221 295Q155 313 110 366T64 493Z"></path><path stroke-width="0" id="E2932-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E2932-MJMAINB-6F" d="M287 -5Q228 -5 182 10T109 48T63 102T39 161T32 219Q32 272 50 314T94 382T154 423T214 446T265 452H279Q319 452 326 451Q428 439 485 376T542 221Q542 156 514 108T442 33Q384 -5 287 -5ZM399 230V250Q399 280 398 298T391 338T372 372T338 392T282 401Q241 401 212 380Q190 363 183 334T175 230Q175 202 175 189T177 153T183 118T195 91T215 68T245 56T287 50Q348 50 374 84Q388 101 393 132T399 230Z"></path><path stroke-width="0" id="E2932-MJMAINB-29" d="M231 251Q231 354 214 439T173 575T123 661T81 714T64 735Q64 744 73 749H75Q77 749 79 749T84 750T90 750H105Q132 732 159 708T220 639T281 542T325 413T343 251T325 89T281 -40T221 -138T159 -207T105 -249H90Q80 -249 76 -249T68 -245T64 -234Q64 -230 81 -212T123 -160T172 -75T214 61T231 251Z"></path><path stroke-width="0" id="E2932-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E2932-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E2932-MJMAINB-7E" d="M343 202Q320 202 278 225T215 249Q181 249 146 214L134 202L115 219Q111 222 106 226T98 234L96 236Q158 306 165 313Q199 344 230 344Q239 344 244 343Q262 339 300 318T359 297Q393 297 428 332L440 344L459 327Q463 324 468 320T476 312L478 310Q416 240 409 233Q375 202 343 202Z"></path><path stroke-width="0" id="E2932-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E2932-MJMAINB-56" d="M592 686H604Q615 685 631 685T666 684T700 684T724 683Q829 683 835 686H843V624H744L611 315Q584 254 546 165Q492 40 482 19T461 -6L460 -7H409Q398 -4 391 9Q385 20 257 315L124 624H25V686H36Q57 683 190 683Q340 683 364 686H377V624H289L384 403L480 185L492 212Q504 240 529 298T575 405L670 624H582V686H592Z"></path><path stroke-width="0" id="E2932-MJMAINB-5E" d="M207 632L287 694Q289 693 368 632T448 570T431 545T413 520Q410 520 350 559L287 597L224 559Q164 520 161 520Q160 520 143 544T126 570T207 632Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(48825,0)"><g id="mjx-eqn-5" transform="translate(0,-42)"><use xlink:href="#E2932-MJMAIN-28"></use><use xlink:href="#E2932-MJMAIN-35" x="389" y="0"></use><use xlink:href="#E2932-MJMAIN-29" x="889" y="0"></use></g></g><g transform="translate(19879,0)"><g transform="translate(-15,0)"><g transform="translate(0,-42)"><use xlink:href="#E2932-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2932-MJMATHI-3B8" x="978" y="-218"></use><use xlink:href="#E2932-MJMAIN-3D" x="1401" y="0"></use><g transform="translate(2457,0)"><use xlink:href="#E2932-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-187)"><use transform="scale(0.707)" xlink:href="#E2932-MJMAINB-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2932-MJMAINB-53" x="446" y="0"></use><g transform="translate(767,0)"><use transform="scale(0.707)" xlink:href="#E2932-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E2932-MJMAINB-6F" x="824" y="-213"></use></g><use transform="scale(0.707)" xlink:href="#E2932-MJMAINB-29" x="2175" y="0"></use></g><g transform="translate(2836,412)"><use transform="scale(0.707)" xlink:href="#E2932-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2932-MJMAIN-31" x="778" y="0"></use></g></g><g transform="translate(6297,0)"><use xlink:href="#E2932-MJMAINB-4C" x="0" y="0"></use><use xlink:href="#E2932-MJMAINB-7E" x="58" y="562"></use><use transform="scale(0.707)" xlink:href="#E2932-MJMATHI-6F" x="978" y="895"></use></g><g transform="translate(7432,0)"><use xlink:href="#E2932-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-342)"><use transform="scale(0.707)" xlink:href="#E2932-MJMAINB-56" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2932-MJMAINB-5E" x="147" y="276"></use></g></g><use xlink:href="#E2932-MJMAINB-53" x="9028" y="0"></use><g transform="translate(9667,0)"><use xlink:href="#E2932-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2932-MJMATHI-6F" x="824" y="595"></use></g></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-410">\bold{L}_\theta = \bold{D_{(S \lambda_o)}}^{-1} \bold{\tilde{L}}^o \bold{D_\hat{V}} \bold{S} \bold{\lambda}^o</script></div></div><p><span>We then construct all the components of matrix </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="30.769ex" height="3.517ex" viewBox="0 -1043.7 13247.8 1514.4" role="img" focusable="false" style="vertical-align: -1.093ex;"><defs><path stroke-width="0" id="E2995-MJMAINB-51" d="M64 339Q64 431 96 502T182 614T295 675T420 696Q469 696 481 695Q620 680 709 589T798 339Q798 255 768 184Q720 77 611 26L600 21Q635 -26 682 -26H696Q769 -26 769 0Q769 7 774 12T787 18Q805 18 805 -7V-13Q803 -64 785 -106T737 -171Q720 -183 697 -191Q687 -193 668 -193Q636 -193 613 -182T575 -144T552 -94T532 -27Q531 -23 530 -16T528 -6T526 -3L512 -5Q499 -7 477 -8T431 -10Q393 -10 382 -9Q238 8 151 97T64 339ZM326 80Q326 113 356 138T430 163Q492 163 542 100L553 86Q554 85 561 91T578 108Q637 179 637 330Q637 430 619 498T548 604Q500 641 425 641Q408 641 390 637T347 623T299 590T259 535Q226 469 226 338Q226 244 246 180T318 79L325 74Q326 74 326 80ZM506 58Q480 112 433 112Q412 112 395 104T378 77Q378 44 431 44Q480 44 506 58Z"></path><path stroke-width="0" id="E2995-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E2995-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E2995-MJMATHI-41" d="M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z"></path><path stroke-width="0" id="E2995-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E2995-MJMAIN-221A" d="M95 178Q89 178 81 186T72 200T103 230T169 280T207 309Q209 311 212 311H213Q219 311 227 294T281 177Q300 134 312 108L397 -77Q398 -77 501 136T707 565T814 786Q820 800 834 800Q841 800 846 794T853 782V776L620 293L385 -193Q381 -200 366 -200Q357 -200 354 -197Q352 -195 256 15L160 225L144 214Q129 202 113 190T95 178Z"></path><path stroke-width="0" id="E2995-MJMATHI-77" d="M580 385Q580 406 599 424T641 443Q659 443 674 425T690 368Q690 339 671 253Q656 197 644 161T609 80T554 12T482 -11Q438 -11 404 5T355 48Q354 47 352 44Q311 -11 252 -11Q226 -11 202 -5T155 14T118 53T104 116Q104 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Q21 293 29 315T52 366T96 418T161 441Q204 441 227 416T250 358Q250 340 217 250T184 111Q184 65 205 46T258 26Q301 26 334 87L339 96V119Q339 122 339 128T340 136T341 143T342 152T345 165T348 182T354 206T362 238T373 281Q402 395 406 404Q419 431 449 431Q468 431 475 421T483 402Q483 389 454 274T422 142Q420 131 420 107V100Q420 85 423 71T442 42T487 26Q558 26 600 148Q609 171 620 213T632 273Q632 306 619 325T593 357T580 385Z"></path><path stroke-width="0" id="E2995-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2995-MJMAINB-4C" d="M643 285Q641 280 629 148T612 4V0H39V62H147V624H39V686H51Q75 683 228 683Q415 685 425 686H439V624H304V62H352H378Q492 62 539 138Q551 156 558 178T569 214T576 255T581 289H643V285Z"></path><path stroke-width="0" id="E2995-MJMAINB-7E" d="M343 202Q320 202 278 225T215 249Q181 249 146 214L134 202L115 219Q111 222 106 226T98 234L96 236Q158 306 165 313Q199 344 230 344Q239 344 244 343Q262 339 300 318T359 297Q393 297 428 332L440 344L459 327Q463 324 468 320T476 312L478 310Q416 240 409 233Q375 202 343 202Z"></path><path stroke-width="0" id="E2995-MJMAINB-56" d="M592 686H604Q615 685 631 685T666 684T700 684T724 683Q829 683 835 686H843V624H744L611 315Q584 254 546 165Q492 40 482 19T461 -6L460 -7H409Q398 -4 391 9Q385 20 257 315L124 624H25V686H36Q57 683 190 683Q340 683 364 686H377V624H289L384 403L480 185L492 212Q504 240 529 298T575 405L670 624H582V686H592Z"></path><path stroke-width="0" id="E2995-MJMAINB-5E" d="M207 632L287 694Q289 693 368 632T448 570T431 545T413 520Q410 520 350 559L287 597L224 559Q164 520 161 520Q160 520 143 544T126 570T207 632Z"></path><path stroke-width="0" id="E2995-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E2995-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E2995-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2995-MJMAINB-53" d="M64 493Q64 582 120 636T264 696H272Q280 697 285 697Q380 697 454 645L480 669Q484 672 488 676T495 683T500 688T504 691T508 693T511 695T514 696T517 697T522 697Q536 697 539 691T542 652V577Q542 557 542 532T543 500Q543 472 540 465T524 458H511H505Q489 458 485 461T479 478Q472 529 449 564T393 614T336 634T287 639Q228 639 203 610T177 544Q177 517 195 493T247 457Q253 454 343 436T475 391Q574 326 574 207V200Q574 163 559 120Q517 12 389 -9Q380 -10 346 -10Q308 -10 275 -5T221 7T184 22T160 35T151 40L126 17Q122 14 118 10T111 3T106 -2T102 -5T98 -7T95 -9T92 -10T89 -11T84 -11Q70 -11 67 -4T64 35V108Q64 128 64 153T63 185Q63 203 63 211T69 223T77 227T94 228H100Q118 228 122 225T126 205Q130 125 193 88T345 51Q408 51 434 82T460 157Q460 196 439 221T388 257Q384 259 305 276T221 295Q155 313 110 366T64 493Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2995-MJMAINB-51" x="0" y="0"></use><use xlink:href="#E2995-MJMAIN-3D" x="1141" y="0"></use><g transform="translate(2197,0)"><use xlink:href="#E2995-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-322)"><use transform="scale(0.707)" xlink:href="#E2995-MJMAIN-221A" x="0" y="82"></use><rect stroke="none" width="843" height="42" x="589" y="581"></rect><g transform="translate(589,0)"><use transform="scale(0.707)" xlink:href="#E2995-MJMATHI-41" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E2995-MJMATHI-6F" x="1060" y="626"></use></g></g></g><g transform="translate(4612,0)"><use xlink:href="#E2995-MJMAINB-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2995-MJMATHI-77" x="1247" y="-213"></use></g><use xlink:href="#E2995-MJMAIN-28" x="6100" y="0"></use><g transform="translate(6489,0)"><use xlink:href="#E2995-MJMAINB-4C" x="0" y="0"></use><use xlink:href="#E2995-MJMAINB-7E" x="58" y="562"></use><use transform="scale(0.707)" xlink:href="#E2995-MJMATHI-6F" x="978" y="895"></use></g><g transform="translate(7624,0)"><use xlink:href="#E2995-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-342)"><use transform="scale(0.707)" xlink:href="#E2995-MJMAINB-56" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2995-MJMAINB-5E" x="147" y="276"></use></g></g><use xlink:href="#E2995-MJMAIN-2212" x="9443" y="0"></use><g transform="translate(10443,0)"><use xlink:href="#E2995-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-150)"><use transform="scale(0.707)" xlink:href="#E2995-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E2995-MJMATHI-3B8" x="978" y="-218"></use></g></g><use xlink:href="#E2995-MJMAIN-29" x="12219" y="0"></use><use xlink:href="#E2995-MJMAINB-53" x="12608" y="0"></use></g></svg></span><script type="math/tex">\bold{Q} = \bold{D}_\sqrt{A^o} \bold{D}_w (\bold{\tilde{L}}^o \bold{D_\hat{V}} - \bold{D}_{\bold{L}_\theta}) \bold{S}</script><span>.</span></p><p><span>Let </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="8.829ex" height="2.671ex" viewBox="0 -835.3 3801.5 1149.8" role="img" focusable="false" style="vertical-align: -0.73ex;"><defs><path stroke-width="0" id="E2996-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2996-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E2996-MJMAIN-7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z"></path><path stroke-width="0" id="E2996-MJMAINB-56" d="M592 686H604Q615 685 631 685T666 684T700 684T724 683Q829 683 835 686H843V624H744L611 315Q584 254 546 165Q492 40 482 19T461 -6L460 -7H409Q398 -4 391 9Q385 20 257 315L124 624H25V686H36Q57 683 190 683Q340 683 364 686H377V624H289L384 403L480 185L492 212Q504 240 529 298T575 405L670 624H582V686H592Z"></path><path stroke-width="0" id="E2996-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2996-MJMATHI-6E" x="0" y="0"></use><use xlink:href="#E2996-MJMAIN-3D" x="877" y="0"></use><use xlink:href="#E2996-MJMAIN-7C" x="1933" y="0"></use><g transform="translate(2211,0)"><use xlink:href="#E2996-MJMAINB-56" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2996-MJMATHI-6F" x="1228" y="584"></use></g><use xlink:href="#E2996-MJMAIN-7C" x="3523" y="0"></use></g></svg></span><script type="math/tex">n = |\bold{V}^o|</script><span>, </span></p><ul><li><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.608ex" height="2.913ex" viewBox="0 -783.2 2414.6 1254" role="img" focusable="false" style="vertical-align: -1.093ex;"><defs><path stroke-width="0" id="E3045-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E3045-MJMATHI-41" d="M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z"></path><path stroke-width="0" id="E3045-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E3045-MJMAIN-221A" d="M95 178Q89 178 81 186T72 200T103 230T169 280T207 309Q209 311 212 311H213Q219 311 227 294T281 177Q300 134 312 108L397 -77Q398 -77 501 136T707 565T814 786Q820 800 834 800Q841 800 846 794T853 782V776L620 293L385 -193Q381 -200 366 -200Q357 -200 354 -197Q352 -195 256 15L160 225L144 214Q129 202 113 190T95 178Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3045-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-322)"><use transform="scale(0.707)" xlink:href="#E3045-MJMAIN-221A" x="0" y="82"></use><rect stroke="none" width="843" height="42" x="589" y="581"></rect><g transform="translate(589,0)"><use transform="scale(0.707)" xlink:href="#E3045-MJMATHI-41" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E3045-MJMATHI-6F" x="1060" y="626"></use></g></g></g></svg></span><script type="math/tex">\bold{D}_\sqrt{A^o}</script><span> is a 3n x 3n matrix with the square root of mass matrix coefficients repeated 3 times (1 for each dimension) on the diagonal. </span></li><li><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.457ex" height="2.313ex" viewBox="0 -768.4 1488.3 995.9" role="img" focusable="false" style="vertical-align: -0.528ex;"><defs><path stroke-width="0" id="E3044-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E3044-MJMATHI-77" d="M580 385Q580 406 599 424T641 443Q659 443 674 425T690 368Q690 339 671 253Q656 197 644 161T609 80T554 12T482 -11Q438 -11 404 5T355 48Q354 47 352 44Q311 -11 252 -11Q226 -11 202 -5T155 14T118 53T104 116Q104 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Q21 293 29 315T52 366T96 418T161 441Q204 441 227 416T250 358Q250 340 217 250T184 111Q184 65 205 46T258 26Q301 26 334 87L339 96V119Q339 122 339 128T340 136T341 143T342 152T345 165T348 182T354 206T362 238T373 281Q402 395 406 404Q419 431 449 431Q468 431 475 421T483 402Q483 389 454 274T422 142Q420 131 420 107V100Q420 85 423 71T442 42T487 26Q558 26 600 148Q609 171 620 213T632 273Q632 306 619 325T593 357T580 385Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3044-MJMAINB-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3044-MJMATHI-77" x="1247" y="-213"></use></g></svg></span><script type="math/tex">\bold{D}_w</script><span> is a 3n x 3n matrix with the weight vector </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.93ex" height="1.461ex" viewBox="0 -522.8 831 629" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E2999-MJMAINB-77" d="M624 444Q636 441 722 441Q797 441 800 444H805V382H741L593 11Q592 10 590 8T586 4T584 2T581 0T579 -2T575 -3T571 -3T567 -4T561 -4T553 -4H542Q525 -4 518 6T490 70Q474 110 463 137L415 257L367 137Q357 111 341 72Q320 17 313 7T289 -4H277Q259 -4 253 -2T238 11L90 382H25V444H32Q47 441 140 441Q243 441 261 444H270V382H222L310 164L382 342L366 382H303V444H310Q322 441 407 441Q508 441 523 444H531V382H506Q481 382 481 380Q482 376 529 259T577 142L674 382H617V444H624Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E2999-MJMAINB-77" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{w}</script><span> repeated 3 times on the diagonal.</span></li><li><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.636ex" height="2.55ex" viewBox="0 -1043.7 1134.9 1097.7" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E3049-MJMAINB-4C" d="M643 285Q641 280 629 148T612 4V0H39V62H147V624H39V686H51Q75 683 228 683Q415 685 425 686H439V624H304V62H352H378Q492 62 539 138Q551 156 558 178T569 214T576 255T581 289H643V285Z"></path><path stroke-width="0" id="E3049-MJMAINB-7E" d="M343 202Q320 202 278 225T215 249Q181 249 146 214L134 202L115 219Q111 222 106 226T98 234L96 236Q158 306 165 313Q199 344 230 344Q239 344 244 343Q262 339 300 318T359 297Q393 297 428 332L440 344L459 327Q463 324 468 320T476 312L478 310Q416 240 409 233Q375 202 343 202Z"></path><path stroke-width="0" id="E3049-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3049-MJMAINB-4C" x="0" y="0"></use><use xlink:href="#E3049-MJMAINB-7E" x="58" y="562"></use><use transform="scale(0.707)" xlink:href="#E3049-MJMATHI-6F" x="978" y="895"></use></g></svg></span><script type="math/tex">\bold{\tilde{L}}^o</script><span>, also 3n x 3n, is the Kronecker product between the cotangent matrix and 3 x 3 identity matrix: </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="13.275ex" height="3.033ex" viewBox="0 -1043.7 5715.4 1306.1" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3001-MJMAINB-4C" d="M643 285Q641 280 629 148T612 4V0H39V62H147V624H39V686H51Q75 683 228 683Q415 685 425 686H439V624H304V62H352H378Q492 62 539 138Q551 156 558 178T569 214T576 255T581 289H643V285Z"></path><path stroke-width="0" id="E3001-MJMAINB-7E" d="M343 202Q320 202 278 225T215 249Q181 249 146 214L134 202L115 219Q111 222 106 226T98 234L96 236Q158 306 165 313Q199 344 230 344Q239 344 244 343Q262 339 300 318T359 297Q393 297 428 332L440 344L459 327Q463 324 468 320T476 312L478 310Q416 240 409 233Q375 202 343 202Z"></path><path stroke-width="0" id="E3001-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E3001-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E3001-MJMAIN-2297" d="M56 250Q56 394 156 488T384 583Q530 583 626 485T722 250Q722 110 625 14T390 -83Q249 -83 153 14T56 250ZM582 471Q531 510 496 523Q446 542 381 542Q324 542 272 519T196 471L389 278L485 375L582 471ZM167 442Q95 362 95 250Q95 137 167 58L359 250L167 442ZM610 58Q682 138 682 250Q682 363 610 442L418 250L610 58ZM196 29Q209 16 230 2T295 -27T388 -42Q409 -42 429 -40T465 -33T496 -23T522 -11T544 1T561 13T574 22T582 29L388 222L196 29Z"></path><path stroke-width="0" id="E3001-MJMAINB-49" d="M397 0Q370 3 218 3Q65 3 38 0H25V62H139V624H25V686H38Q65 683 218 683Q370 683 397 686H410V624H296V62H410V0H397Z"></path><path stroke-width="0" id="E3001-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3001-MJMAINB-4C" x="0" y="0"></use><use xlink:href="#E3001-MJMAINB-7E" x="58" y="562"></use><use transform="scale(0.707)" xlink:href="#E3001-MJMATHI-6F" x="978" y="895"></use><use xlink:href="#E3001-MJMAIN-3D" x="1412" y="0"></use><g transform="translate(2468,0)"><use xlink:href="#E3001-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3001-MJMATHI-6F" x="978" y="584"></use></g><use xlink:href="#E3001-MJMAIN-2297" x="3825" y="0"></use><g transform="translate(4825,0)"><use xlink:href="#E3001-MJMAINB-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3001-MJMAIN-33" x="616" y="-213"></use></g></g></svg></span><script type="math/tex">\bold{\tilde{L}}^o = \bold{L}^o \otimes \bold{I}_3</script></li><li><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.484ex" height="2.066ex" viewBox="0 -783.2 639 889.4" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E3051-MJMAINB-53" d="M64 493Q64 582 120 636T264 696H272Q280 697 285 697Q380 697 454 645L480 669Q484 672 488 676T495 683T500 688T504 691T508 693T511 695T514 696T517 697T522 697Q536 697 539 691T542 652V577Q542 557 542 532T543 500Q543 472 540 465T524 458H511H505Q489 458 485 461T479 478Q472 529 449 564T393 614T336 634T287 639Q228 639 203 610T177 544Q177 517 195 493T247 457Q253 454 343 436T475 391Q574 326 574 207V200Q574 163 559 120Q517 12 389 -9Q380 -10 346 -10Q308 -10 275 -5T221 7T184 22T160 35T151 40L126 17Q122 14 118 10T111 3T106 -2T102 -5T98 -7T95 -9T92 -10T89 -11T84 -11Q70 -11 67 -4T64 35V108Q64 128 64 153T63 185Q63 203 63 211T69 223T77 227T94 228H100Q118 228 122 225T126 205Q130 125 193 88T345 51Q408 51 434 82T460 157Q460 196 439 221T388 257Q384 259 305 276T221 295Q155 313 110 366T64 493Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3051-MJMAINB-53" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{S}</script><span> is a 3n x n selector matrix that associates each </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.153ex" height="2.429ex" viewBox="0 -783.2 927 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3061-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3061-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3061-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3061-MJMATHI-69" x="824" y="-213"></use></g></svg></span><script type="math/tex">\lambda_i</script><span> with the x, y, z coordinates of </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.209ex" height="1.824ex" viewBox="0 -522.8 951 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3053-MJMAINB-76" d="M401 444Q413 441 495 441Q568 441 574 444H580V382H510L409 156Q348 18 339 6Q331 -4 320 -4Q318 -4 313 -4T303 -3H288Q273 -3 264 12T221 102Q206 135 197 156L96 382H26V444H34Q49 441 145 441Q252 441 270 444H279V382H231L284 264Q335 149 338 149Q338 150 389 264T442 381Q442 382 418 382H394V444H401Z"></path><path stroke-width="0" id="E3053-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3053-MJMAINB-76" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3053-MJMATHI-69" x="858" y="-213"></use></g></svg></span><script type="math/tex">\bold{v}_i</script><span>: </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="13.299ex" height="2.913ex" viewBox="0 -939.5 5725.8 1254" role="img" focusable="false" style="vertical-align: -0.73ex;"><defs><path stroke-width="0" id="E3054-MJMAINB-49" d="M397 0Q370 3 218 3Q65 3 38 0H25V62H139V624H25V686H38Q65 683 218 683Q370 683 397 686H410V624H296V62H410V0H397Z"></path><path stroke-width="0" id="E3054-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3054-MJMAIN-2297" d="M56 250Q56 394 156 488T384 583Q530 583 626 485T722 250Q722 110 625 14T390 -83Q249 -83 153 14T56 250ZM582 471Q531 510 496 523Q446 542 381 542Q324 542 272 519T196 471L389 278L485 375L582 471ZM167 442Q95 362 95 250Q95 137 167 58L359 250L167 442ZM610 58Q682 138 682 250Q682 363 610 442L418 250L610 58ZM196 29Q209 16 230 2T295 -27T388 -42Q409 -42 429 -40T465 -33T496 -23T522 -11T544 1T561 13T574 22T582 29L388 222L196 29Z"></path><path stroke-width="0" id="E3054-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E3054-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E3054-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E3054-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E3054-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3054-MJMAINB-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3054-MJMATHI-6E" x="616" y="-213"></use><use xlink:href="#E3054-MJMAIN-2297" x="1182" y="0"></use><use xlink:href="#E3054-MJMAIN-5B" x="2182" y="0"></use><use xlink:href="#E3054-MJMAIN-31" x="2460" y="0"></use><use xlink:href="#E3054-MJMAIN-2C" x="2960" y="0"></use><use xlink:href="#E3054-MJMAIN-31" x="3405" y="0"></use><use xlink:href="#E3054-MJMAIN-2C" x="3905" y="0"></use><use xlink:href="#E3054-MJMAIN-31" x="4350" y="0"></use><g transform="translate(4850,0)"><use xlink:href="#E3054-MJMAIN-5D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3054-MJMATHI-54" x="393" y="513"></use></g></g></svg></span><script type="math/tex">\bold{I}_n \otimes [1,1,1]^T</script></li></ul><h4><a name="allowing-disconnected-pieces" class="md-header-anchor"></a><span>Allowing Disconnected Pieces</span></h4><p><span>Some meshes are composed of disconnected pieces. There might be use cases where each deformed piece needs to occupy a different location. In this case, the </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.354ex" height="1.999ex" viewBox="0 -768.4 583 860.6" role="img" focusable="false" style="vertical-align: -0.214ex;"><defs><path stroke-width="0" id="E3060-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3060-MJMATHI-3BB" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{\lambda}</script><span> bounds need to be discontinuous as well. For example, suppose mesh A is a "connected" mesh with 4 vertices. Its </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.354ex" height="1.999ex" viewBox="0 -768.4 583 860.6" role="img" focusable="false" style="vertical-align: -0.214ex;"><defs><path stroke-width="0" id="E3060-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3060-MJMATHI-3BB" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{\lambda}</script><span> bounds could be:</span></p><ul><li><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.58ex" height="2.429ex" viewBox="0 -783.2 1972.1 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3011-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3011-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3011-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3011-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3011-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E3011-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3011-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E3011-MJMATHI-6E" x="1223" y="0"></use></g></g></svg></span><script type="math/tex">\bold{\lambda}_{min}</script><span>: 10, 10, 10, 10</span></li><li><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.836ex" height="2.429ex" viewBox="0 -783.2 2082.4 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3012-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3012-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3012-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E3012-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3012-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E3012-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3012-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E3012-MJMATHI-78" x="1406" y="0"></use></g></g></svg></span><script type="math/tex">\bold{\lambda}_{max}</script><span>: 11, 11, 11, 11</span></li></ul><p><span>Suppose mesh B is a "disconnected" mesh with 4 vertices and 2 vertex groups. Its </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.354ex" height="1.999ex" viewBox="0 -768.4 583 860.6" role="img" focusable="false" style="vertical-align: -0.214ex;"><defs><path stroke-width="0" id="E3060-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3060-MJMATHI-3BB" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{\lambda}</script><span> bounds could be:</span></p><ul><li><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.58ex" height="2.429ex" viewBox="0 -783.2 1972.1 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3011-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3011-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3011-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3011-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3011-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E3011-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3011-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E3011-MJMATHI-6E" x="1223" y="0"></use></g></g></svg></span><script type="math/tex">\bold{\lambda}_{min}</script><span>: 10, 10, 11, 11</span></li><li><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.836ex" height="2.429ex" viewBox="0 -783.2 2082.4 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3012-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3012-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3012-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E3012-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3012-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E3012-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3012-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E3012-MJMATHI-78" x="1406" y="0"></use></g></g></svg></span><script type="math/tex">\bold{\lambda}_{max}</script><span>: 11, 11, 12, 12</span></li></ul><p><span>This complicates user input because users need to calculate different bounds for different vertex groups. To simplify user input for this use case, the paper introduces a vector </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.401ex" height="1.945ex" viewBox="0 -522.8 603 837.3" role="img" focusable="false" style="vertical-align: -0.73ex;"><defs><path stroke-width="0" id="E3034-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3034-MJMATHI-3BC" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{\mu}</script><span>, where each element </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.421ex" height="2.066ex" viewBox="0 -522.8 1042.4 889.4" role="img" focusable="false" style="vertical-align: -0.851ex;"><defs><path stroke-width="0" id="E3037-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path><path stroke-width="0" id="E3037-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3037-MJMATHI-3BC" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3037-MJMATHI-67" x="852" y="-213"></use></g></svg></span><script type="math/tex">\mu_g</script><span> is a scaling factor for an independent group of vertices such that </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="22.606ex" height="2.913ex" viewBox="0 -887.4 9733.3 1254" role="img" focusable="false" style="vertical-align: -0.851ex;"><defs><path stroke-width="0" id="E3058-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path><path stroke-width="0" id="E3058-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E3058-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3058-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3058-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3058-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3058-MJMAIN-2264" d="M674 636Q682 636 688 630T694 615T687 601Q686 600 417 472L151 346L399 228Q687 92 691 87Q694 81 694 76Q694 58 676 56H670L382 192Q92 329 90 331Q83 336 83 348Q84 359 96 365Q104 369 382 500T665 634Q669 636 674 636ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E3058-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E3058-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3058-MJMATHI-3BC" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-67" x="852" y="-213"></use><g transform="translate(1042,0)"><use xlink:href="#E3058-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,352)"><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-6E" x="1223" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-69" x="824" y="-429"></use></g><use xlink:href="#E3058-MJMAIN-2264" x="3292" y="0"></use><g transform="translate(4348,0)"><use xlink:href="#E3058-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-69" x="824" y="-213"></use></g><use xlink:href="#E3058-MJMAIN-2264" x="5552" y="0"></use><g transform="translate(6608,0)"><use xlink:href="#E3058-MJMATHI-3BC" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-67" x="852" y="-213"></use></g><g transform="translate(7650,0)"><use xlink:href="#E3058-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,352)"><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-78" x="1406" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-69" x="824" y="-429"></use></g></g></svg></span><script type="math/tex">\mu_g \lambda^{min}_i \leq \lambda_i \leq \mu_g \lambda^{max}_i</script><span> holds for all vertices </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.801ex" height="1.945ex" viewBox="0 -731.2 345 837.3" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E3016-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3016-MJMATHI-69" x="0" y="0"></use></g></svg></span><script type="math/tex">i</script><span> in group </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.115ex" height="1.824ex" viewBox="0 -522.8 480 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3020-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3020-MJMATHI-67" x="0" y="0"></use></g></svg></span><script type="math/tex">g</script><span>. </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.144ex" height="2.671ex" viewBox="0 -835.3 2214.8 1149.8" role="img" focusable="false" style="vertical-align: -0.73ex;"><defs><path stroke-width="0" id="E3018-MJMAIN-7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z"></path><path stroke-width="0" id="E3018-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path><path stroke-width="0" id="E3018-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3018-MJMAIN-7C" x="0" y="0"></use><use xlink:href="#E3018-MJMATHI-3BC" x="278" y="0"></use><use xlink:href="#E3018-MJMAIN-7C" x="881" y="0"></use><use xlink:href="#E3018-MJMAIN-3D" x="1436" y="0"></use></g></svg></span><script type="math/tex">|\bold{\mu}| =</script><span> number of groups. </span></p><p><span>To obtain a unique solution for </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.421ex" height="2.066ex" viewBox="0 -522.8 1042.4 889.4" role="img" focusable="false" style="vertical-align: -0.851ex;"><defs><path stroke-width="0" id="E3037-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path><path stroke-width="0" id="E3037-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3037-MJMATHI-3BC" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3037-MJMATHI-67" x="852" y="-213"></use></g></svg></span><script type="math/tex">\mu_g</script><span>, for each group </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.115ex" height="1.824ex" viewBox="0 -522.8 480 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3020-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3020-MJMATHI-67" x="0" y="0"></use></g></svg></span><script type="math/tex">g</script><span>, we can fix the value of </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.23ex" height="2.671ex" viewBox="0 -783.2 1390.8 1149.8" role="img" focusable="false" style="vertical-align: -0.851ex;"><defs><path stroke-width="0" id="E3032-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3032-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E3032-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3032-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E3032-MJMATHI-67" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3032-MJMATHI-6B" x="480" y="0"></use></g></g></svg></span><script type="math/tex">\lambda_{gk}</script><span> for a (randomly selected) vertex </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.286ex" height="2.066ex" viewBox="0 -522.8 1414.8 889.4" role="img" focusable="false" style="vertical-align: -0.851ex;"><defs><path stroke-width="0" id="E3022-MJMAINB-76" d="M401 444Q413 441 495 441Q568 441 574 444H580V382H510L409 156Q348 18 339 6Q331 -4 320 -4Q318 -4 313 -4T303 -3H288Q273 -3 264 12T221 102Q206 135 197 156L96 382H26V444H34Q49 441 145 441Q252 441 270 444H279V382H231L284 264Q335 149 338 149Q338 150 389 264T442 381Q442 382 418 382H394V444H401Z"></path><path stroke-width="0" id="E3022-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E3022-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3022-MJMAINB-76" x="0" y="0"></use><g transform="translate(607,-150)"><use transform="scale(0.707)" xlink:href="#E3022-MJMATHI-67" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3022-MJMATHI-6B" x="480" y="0"></use></g></g></svg></span><script type="math/tex">\bold{v}_{gk}</script><span>. The value of </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.23ex" height="2.671ex" viewBox="0 -783.2 1390.8 1149.8" role="img" focusable="false" style="vertical-align: -0.851ex;"><defs><path stroke-width="0" id="E3032-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3032-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E3032-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3032-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E3032-MJMATHI-67" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3032-MJMATHI-6B" x="480" y="0"></use></g></g></svg></span><script type="math/tex">\lambda_{gk}</script><span> then affects the value of </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.421ex" height="2.066ex" viewBox="0 -522.8 1042.4 889.4" role="img" focusable="false" style="vertical-align: -0.851ex;"><defs><path stroke-width="0" id="E3037-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path><path stroke-width="0" id="E3037-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3037-MJMATHI-3BC" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3037-MJMATHI-67" x="852" y="-213"></use></g></svg></span><script type="math/tex">\mu_g</script><span>.</span></p><h4><a name="optimization" class="md-header-anchor"></a><span>Optimization</span></h4><p><span>Finally, we optimize for both </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.354ex" height="2.066ex" viewBox="0 -783.2 583 889.4" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E3062-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3062-MJMATHI-3BB" x="0" y="0"></use></g></svg></span><script type="math/tex">\lambda</script><span> and </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.401ex" height="1.945ex" viewBox="0 -522.8 603 837.3" role="img" focusable="false" style="vertical-align: -0.73ex;"><defs><path stroke-width="0" id="E3026-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3026-MJMATHI-3BC" x="0" y="0"></use></g></svg></span><script type="math/tex">\mu</script><span>:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n337" cid="n337" mdtype="math_block">
<div class="md-rawblock-container md-math-container" contenteditable="false" tabindex="-1">
<div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-2461-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="21.227ex" height="17.308ex" viewBox="0 -3960.3 9139.5 7451.9" role="img" focusable="false" style="vertical-align: -8.109ex; max-width: 100%;"><defs><path stroke-width="0" id="E3080-MJMAIN-6D" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 122T103 161T103 203Q103 234 103 269T102 328V351Q99 370 88 376T43 385H25V408Q25 431 27 431L37 432Q47 433 65 434T102 436Q119 437 138 438T167 441T178 442H181V402Q181 364 182 364T187 369T199 384T218 402T247 421T285 437Q305 442 336 442Q351 442 364 440T387 434T406 426T421 417T432 406T441 395T448 384T452 374T455 366L457 361L460 365Q463 369 466 373T475 384T488 397T503 410T523 422T546 432T572 439T603 442Q729 442 740 329Q741 322 741 190V104Q741 66 743 59T754 49Q775 46 803 46H819V0H811L788 1Q764 2 737 2T699 3Q596 3 587 0H579V46H595Q656 46 656 62Q657 64 657 200Q656 335 655 343Q649 371 635 385T611 402T585 404Q540 404 506 370Q479 343 472 315T464 232V168V108Q464 78 465 68T468 55T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path stroke-width="0" id="E3080-MJMAIN-69" d="M69 609Q69 637 87 653T131 669Q154 667 171 652T188 609Q188 579 171 564T129 549Q104 549 87 564T69 609ZM247 0Q232 3 143 3Q132 3 106 3T56 1L34 0H26V46H42Q70 46 91 49Q100 53 102 60T104 102V205V293Q104 345 102 359T88 378Q74 385 41 385H30V408Q30 431 32 431L42 432Q52 433 70 434T106 436Q123 437 142 438T171 441T182 442H185V62Q190 52 197 50T232 46H255V0H247Z"></path><path stroke-width="0" id="E3080-MJMAIN-6E" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 122T103 161T103 203Q103 234 103 269T102 328V351Q99 370 88 376T43 385H25V408Q25 431 27 431L37 432Q47 433 65 434T102 436Q119 437 138 438T167 441T178 442H181V402Q181 364 182 364T187 369T199 384T218 402T247 421T285 437Q305 442 336 442Q450 438 463 329Q464 322 464 190V104Q464 66 466 59T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path stroke-width="0" id="E3080-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3080-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E3080-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path><path stroke-width="0" id="E3080-MJMAIN-2225" d="M133 736Q138 750 153 750Q164 750 170 739Q172 735 172 250T170 -239Q164 -250 152 -250Q144 -250 138 -244L137 -243Q133 -241 133 -179T132 250Q132 731 133 736ZM329 739Q334 750 346 750Q353 750 361 744L362 743Q366 741 366 679T367 250T367 -178T362 -243L361 -244Q355 -250 347 -250Q335 -250 329 -239Q327 -235 327 250T329 739Z"></path><path stroke-width="0" id="E3080-MJMAINB-51" d="M64 339Q64 431 96 502T182 614T295 675T420 696Q469 696 481 695Q620 680 709 589T798 339Q798 255 768 184Q720 77 611 26L600 21Q635 -26 682 -26H696Q769 -26 769 0Q769 7 774 12T787 18Q805 18 805 -7V-13Q803 -64 785 -106T737 -171Q720 -183 697 -191Q687 -193 668 -193Q636 -193 613 -182T575 -144T552 -94T532 -27Q531 -23 530 -16T528 -6T526 -3L512 -5Q499 -7 477 -8T431 -10Q393 -10 382 -9Q238 8 151 97T64 339ZM326 80Q326 113 356 138T430 163Q492 163 542 100L553 86Q554 85 561 91T578 108Q637 179 637 330Q637 430 619 498T548 604Q500 641 425 641Q408 641 390 637T347 623T299 590T259 535Q226 469 226 338Q226 244 246 180T318 79L325 74Q326 74 326 80ZM506 58Q480 112 433 112Q412 112 395 104T378 77Q378 44 431 44Q480 44 506 58Z"></path><path stroke-width="0" id="E3080-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E3080-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E3080-MJMATHI-3B1" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path stroke-width="0" id="E3080-MJMAIN-73" d="M295 316Q295 356 268 385T190 414Q154 414 128 401Q98 382 98 349Q97 344 98 336T114 312T157 287Q175 282 201 278T245 269T277 256Q294 248 310 236T342 195T359 133Q359 71 321 31T198 -10H190Q138 -10 94 26L86 19L77 10Q71 4 65 -1L54 -11H46H42Q39 -11 33 -5V74V132Q33 153 35 157T45 162H54Q66 162 70 158T75 146T82 119T101 77Q136 26 198 26Q295 26 295 104Q295 133 277 151Q257 175 194 187T111 210Q75 227 54 256T33 318Q33 357 50 384T93 424T143 442T187 447H198Q238 447 268 432L283 424L292 431Q302 440 314 448H322H326Q329 448 335 442V310L329 304H301Q295 310 295 316Z"></path><path stroke-width="0" id="E3080-MJMAIN-75" d="M383 58Q327 -10 256 -10H249Q124 -10 105 89Q104 96 103 226Q102 335 102 348T96 369Q86 385 36 385H25V408Q25 431 27 431L38 432Q48 433 67 434T105 436Q122 437 142 438T172 441T184 442H187V261Q188 77 190 64Q193 49 204 40Q224 26 264 26Q290 26 311 35T343 58T363 90T375 120T379 144Q379 145 379 161T380 201T380 248V315Q380 361 370 372T320 385H302V431Q304 431 378 436T457 442H464V264Q464 84 465 81Q468 61 479 55T524 46H542V0Q540 0 467 -5T390 -11H383V58Z"></path><path stroke-width="0" id="E3080-MJMAIN-62" d="M307 -11Q234 -11 168 55L158 37Q156 34 153 28T147 17T143 10L138 1L118 0H98V298Q98 599 97 603Q94 622 83 628T38 637H20V660Q20 683 22 683L32 684Q42 685 61 686T98 688Q115 689 135 690T165 693T176 694H179V543Q179 391 180 391L183 394Q186 397 192 401T207 411T228 421T254 431T286 439T323 442Q401 442 461 379T522 216Q522 115 458 52T307 -11ZM182 98Q182 97 187 90T196 79T206 67T218 55T233 44T250 35T271 29T295 26Q330 26 363 46T412 113Q424 148 424 212Q424 287 412 323Q385 405 300 405Q270 405 239 390T188 347L182 339V98Z"></path><path stroke-width="0" id="E3080-MJMAIN-6A" d="M98 609Q98 637 116 653T160 669Q183 667 200 652T217 609Q217 579 200 564T158 549Q133 549 116 564T98 609ZM28 -163Q58 -168 64 -168Q124 -168 135 -77Q137 -65 137 141T136 353Q132 371 120 377T72 385H52V408Q52 431 54 431L58 432Q62 432 70 432T87 433T108 434T133 436Q151 437 171 438T202 441T214 442H218V184Q217 -36 217 -59T211 -98Q195 -145 153 -175T58 -205Q9 -205 -23 -179T-55 -117Q-55 -94 -40 -79T-2 -64T36 -79T52 -118Q52 -143 28 -163Z"></path><path stroke-width="0" id="E3080-MJMAIN-65" d="M28 218Q28 273 48 318T98 391T163 433T229 448Q282 448 320 430T378 380T406 316T415 245Q415 238 408 231H126V216Q126 68 226 36Q246 30 270 30Q312 30 342 62Q359 79 369 104L379 128Q382 131 395 131H398Q415 131 415 121Q415 117 412 108Q393 53 349 21T250 -11Q155 -11 92 58T28 218ZM333 275Q322 403 238 411H236Q228 411 220 410T195 402T166 381T143 340T127 274V267H333V275Z"></path><path stroke-width="0" id="E3080-MJMAIN-63" d="M370 305T349 305T313 320T297 358Q297 381 312 396Q317 401 317 402T307 404Q281 408 258 408Q209 408 178 376Q131 329 131 219Q131 137 162 90Q203 29 272 29Q313 29 338 55T374 117Q376 125 379 127T395 129H409Q415 123 415 120Q415 116 411 104T395 71T366 33T318 2T249 -11Q163 -11 99 53T34 214Q34 318 99 383T250 448T370 421T404 357Q404 334 387 320Z"></path><path stroke-width="0" id="E3080-MJMAIN-74" d="M27 422Q80 426 109 478T141 600V615H181V431H316V385H181V241Q182 116 182 100T189 68Q203 29 238 29Q282 29 292 100Q293 108 293 146V181H333V146V134Q333 57 291 17Q264 -10 221 -10Q187 -10 162 2T124 33T105 68T98 100Q97 107 97 248V385H18V422H27Z"></path><path stroke-width="0" id="E3080-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E3080-MJMAINB-43" d="M64 343Q64 502 174 599T468 697Q502 697 533 691T586 674T623 655T647 639T657 632L694 663Q703 670 711 677T723 687T730 692T735 695T740 696T746 697Q759 697 762 692T766 668V627V489V449Q766 428 762 424T742 419H732H720Q699 419 697 436Q690 498 657 545Q611 618 532 632Q522 634 496 634Q356 634 286 553Q232 488 232 343T286 133Q355 52 497 52Q597 52 650 112T704 237Q704 248 709 251T729 254H735Q750 254 755 253T763 248T766 234Q766 136 680 63T469 -11Q285 -11 175 86T64 343Z"></path><path stroke-width="0" id="E3080-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path><path stroke-width="0" id="E3080-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E3080-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E3080-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E3080-MJMAIN-2264" d="M674 636Q682 636 688 630T694 615T687 601Q686 600 417 472L151 346L399 228Q687 92 691 87Q694 81 694 76Q694 58 676 56H670L382 192Q92 329 90 331Q83 336 83 348Q84 359 96 365Q104 369 382 500T665 634Q669 636 674 636ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E3080-MJMAINB-64" d="M351 686L442 690Q533 694 534 694H540V389Q540 327 540 253T539 163Q539 97 541 83T555 66Q569 62 596 62H609V31Q609 0 608 0Q588 0 510 -3T412 -6Q411 -6 411 16V38L401 31Q337 -6 265 -6Q159 -6 99 58T38 224Q38 265 51 303T92 375T165 429T272 449Q359 449 417 412V507V555Q417 597 415 607T402 620Q388 624 361 624H348V686H351ZM411 350Q362 399 291 399Q278 399 256 392T218 371Q195 351 189 320T182 238V221Q182 179 183 159T191 115T212 74Q241 46 288 46Q358 46 404 100L411 109V350Z"></path><path stroke-width="0" id="E3080-MJMATHI-45" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path stroke-width="0" id="E3080-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E3080-MJMAINB-62" d="M32 686L123 690Q214 694 215 694H221V409Q289 450 378 450Q479 450 539 387T600 221Q600 122 535 58T358 -6H355Q272 -6 203 53L160 1L129 0H98V301Q98 362 98 435T99 525Q99 591 97 604T83 620Q69 624 42 624H29V686H32ZM227 105L232 99Q237 93 242 87T258 73T280 59T306 49T339 45Q380 45 411 66T451 131Q457 160 457 230Q457 264 456 284T448 329T430 367T396 389T343 398Q282 398 235 355L227 348V105Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,3007)"><g transform="translate(166,0)"><use xlink:href="#E3080-MJMAIN-6D"></use><use xlink:href="#E3080-MJMAIN-69" x="833" y="0"></use><use xlink:href="#E3080-MJMAIN-6E" x="1111" y="0"></use><g transform="translate(315,-658)"><use transform="scale(0.707)" xlink:href="#E3080-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3080-MJMAIN-2C" x="583" y="0"></use><use transform="scale(0.707)" xlink:href="#E3080-MJMATHI-3BC" x="861" y="0"></use></g></g><use xlink:href="#E3080-MJMAIN-2225" x="2000" y="0"></use><use xlink:href="#E3080-MJMAINB-51" x="2500" y="0"></use><use xlink:href="#E3080-MJMATHI-3BB" x="3364" y="0"></use><g transform="translate(3947,0)"><use xlink:href="#E3080-MJMAIN-2225" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3080-MJMAIN-32" x="707" y="583"></use></g><use xlink:href="#E3080-MJMAIN-2B" x="5123" y="0"></use><use xlink:href="#E3080-MJMATHI-3B1" x="6123" y="0"></use><use xlink:href="#E3080-MJMAIN-2225" x="6763" y="0"></use><use xlink:href="#E3080-MJMATHI-3BC" x="7263" y="0"></use><g transform="translate(7866,0)"><use xlink:href="#E3080-MJMAIN-2225" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3080-MJMAIN-32" x="707" y="583"></use></g></g><g transform="translate(0,-303)"><use xlink:href="#E3080-MJMAIN-73"></use><use xlink:href="#E3080-MJMAIN-75" x="394" y="0"></use><use xlink:href="#E3080-MJMAIN-62" x="950" y="0"></use><use xlink:href="#E3080-MJMAIN-6A" x="1506" y="0"></use><use xlink:href="#E3080-MJMAIN-65" x="1812" y="0"></use><use xlink:href="#E3080-MJMAIN-63" x="2256" y="0"></use><use xlink:href="#E3080-MJMAIN-74" x="2700" y="0"></use><use xlink:href="#E3080-MJMAIN-74" x="3339" y="0"></use><use xlink:href="#E3080-MJMAIN-6F" x="3728" y="0"></use></g><g transform="translate(0,-1700)"><use xlink:href="#E3080-MJMAINB-43" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3080-MJMATHI-49" x="1175" y="-213"></use><use xlink:href="#E3080-MJMAIN-5B" x="1287" y="0"></use><use xlink:href="#E3080-MJMATHI-3BB" x="1565" y="0"></use><use xlink:href="#E3080-MJMATHI-3BC" x="2703" y="0"></use><g transform="translate(3306,0)"><use xlink:href="#E3080-MJMAIN-5D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3080-MJMATHI-54" x="393" y="583"></use></g><use xlink:href="#E3080-MJMAIN-2264" x="4460" y="0"></use><use xlink:href="#E3080-MJMAINB-64" x="5516" y="0"></use></g><g transform="translate(0,-3142)"><use xlink:href="#E3080-MJMAINB-43" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3080-MJMATHI-45" x="1175" y="-213"></use><use xlink:href="#E3080-MJMAIN-5B" x="1471" y="0"></use><use xlink:href="#E3080-MJMATHI-3BB" x="1749" y="0"></use><use xlink:href="#E3080-MJMATHI-3BC" x="2887" y="0"></use><g transform="translate(3490,0)"><use xlink:href="#E3080-MJMAIN-5D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3080-MJMATHI-54" x="393" y="583"></use></g><use xlink:href="#E3080-MJMAIN-3D" x="4644" y="0"></use><use xlink:href="#E3080-MJMAINB-62" x="5700" y="0"></use></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-2461">\begin{align*}
& \min_{\bold{\lambda}, \bold{\mu}} \Vert \bold{Q} \bold{\lambda} \Vert^2 + \alpha \Vert \bold{\mu} \Vert^2 \\
\\
& \text{subject to } \\
& \bold{C}_I [\lambda \;\; \mu]^T \le \bold{d} \\
& \bold{C}_E [\lambda \;\; \mu]^T = \bold{b} \\
\end{align*}</script>
</div></div><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.486ex" height="1.461ex" viewBox="0 -522.8 640 629" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E3027-MJMATHI-3B1" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3027-MJMATHI-3B1" x="0" y="0"></use></g></svg></span><script type="math/tex">\alpha</script><span> Is set to </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.654ex" height="2.429ex" viewBox="0 -939.5 2003.7 1045.7" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E3028-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E3028-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E3028-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E3028-MJMAIN-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3028-MJMAIN-31"></use><use xlink:href="#E3028-MJMAIN-30" x="500" y="0"></use><g transform="translate(1000,392)"><use transform="scale(0.707)" xlink:href="#E3028-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3028-MJMAIN-37" x="778" y="0"></use></g></g></svg></span><script type="math/tex">10^{-7}</script><span> in the paper. </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.99ex" height="2.308ex" viewBox="0 -783.2 1287.4 993.6" role="img" focusable="false" style="vertical-align: -0.489ex;"><defs><path stroke-width="0" id="E3057-MJMAINB-43" d="M64 343Q64 502 174 599T468 697Q502 697 533 691T586 674T623 655T647 639T657 632L694 663Q703 670 711 677T723 687T730 692T735 695T740 696T746 697Q759 697 762 692T766 668V627V489V449Q766 428 762 424T742 419H732H720Q699 419 697 436Q690 498 657 545Q611 618 532 632Q522 634 496 634Q356 634 286 553Q232 488 232 343T286 133Q355 52 497 52Q597 52 650 112T704 237Q704 248 709 251T729 254H735Q750 254 755 253T763 248T766 234Q766 136 680 63T469 -11Q285 -11 175 86T64 343Z"></path><path stroke-width="0" id="E3057-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3057-MJMAINB-43" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3057-MJMATHI-49" x="1175" y="-213"></use></g></svg></span><script type="math/tex">\bold{C}_I</script><span> are the inequality constraints derived from </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="22.606ex" height="2.913ex" viewBox="0 -887.4 9733.3 1254" role="img" focusable="false" style="vertical-align: -0.851ex;"><defs><path stroke-width="0" id="E3058-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path><path stroke-width="0" id="E3058-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E3058-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3058-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3058-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3058-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3058-MJMAIN-2264" d="M674 636Q682 636 688 630T694 615T687 601Q686 600 417 472L151 346L399 228Q687 92 691 87Q694 81 694 76Q694 58 676 56H670L382 192Q92 329 90 331Q83 336 83 348Q84 359 96 365Q104 369 382 500T665 634Q669 636 674 636ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E3058-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E3058-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3058-MJMATHI-3BC" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-67" x="852" y="-213"></use><g transform="translate(1042,0)"><use xlink:href="#E3058-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,352)"><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-6E" x="1223" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-69" x="824" y="-429"></use></g><use xlink:href="#E3058-MJMAIN-2264" x="3292" y="0"></use><g transform="translate(4348,0)"><use xlink:href="#E3058-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-69" x="824" y="-213"></use></g><use xlink:href="#E3058-MJMAIN-2264" x="5552" y="0"></use><g transform="translate(6608,0)"><use xlink:href="#E3058-MJMATHI-3BC" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-67" x="852" y="-213"></use></g><g transform="translate(7650,0)"><use xlink:href="#E3058-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,352)"><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-78" x="1406" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-69" x="824" y="-429"></use></g></g></svg></span><script type="math/tex">\mu_g \lambda^{min}_i \leq \lambda_i \leq \mu_g \lambda^{max}_i</script><span>. </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.417ex" height="2.308ex" viewBox="0 -783.2 1471.2 993.6" role="img" focusable="false" style="vertical-align: -0.489ex;"><defs><path stroke-width="0" id="E3031-MJMAINB-43" d="M64 343Q64 502 174 599T468 697Q502 697 533 691T586 674T623 655T647 639T657 632L694 663Q703 670 711 677T723 687T730 692T735 695T740 696T746 697Q759 697 762 692T766 668V627V489V449Q766 428 762 424T742 419H732H720Q699 419 697 436Q690 498 657 545Q611 618 532 632Q522 634 496 634Q356 634 286 553Q232 488 232 343T286 133Q355 52 497 52Q597 52 650 112T704 237Q704 248 709 251T729 254H735Q750 254 755 253T763 248T766 234Q766 136 680 63T469 -11Q285 -11 175 86T64 343Z"></path><path stroke-width="0" id="E3031-MJMATHI-45" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3031-MJMAINB-43" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3031-MJMATHI-45" x="1175" y="-213"></use></g></svg></span><script type="math/tex">\bold{C}_E</script><span> are the equality constraints derived from fixing </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.23ex" height="2.671ex" viewBox="0 -783.2 1390.8 1149.8" role="img" focusable="false" style="vertical-align: -0.851ex;"><defs><path stroke-width="0" id="E3032-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3032-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E3032-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3032-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E3032-MJMATHI-67" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3032-MJMATHI-6B" x="480" y="0"></use></g></g></svg></span><script type="math/tex">\lambda_{gk}</script><span>.</span></p><p><span>Combining </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.354ex" height="1.999ex" viewBox="0 -768.4 583 860.6" role="img" focusable="false" style="vertical-align: -0.214ex;"><defs><path stroke-width="0" id="E3060-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3060-MJMATHI-3BB" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{\lambda}</script><span> and </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.401ex" height="1.945ex" viewBox="0 -522.8 603 837.3" role="img" focusable="false" style="vertical-align: -0.73ex;"><defs><path stroke-width="0" id="E3034-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3034-MJMATHI-3BC" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{\mu}</script><span> into one unknown vector </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.41ex" height="1.34ex" viewBox="0 -522.8 607 576.9" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E3035-MJMAINB-78" d="M227 0Q212 3 121 3Q40 3 28 0H21V62H117L245 213L109 382H26V444H34Q49 441 143 441Q247 441 265 444H274V382H246L281 339Q315 297 316 297Q320 297 354 341L389 382H352V444H360Q375 441 466 441Q547 441 559 444H566V382H471L355 246L504 63L545 62H586V0H578Q563 3 469 3Q365 3 347 0H338V62H366Q366 63 326 112T285 163L198 63L217 62H235V0H227Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3035-MJMAINB-78" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{x}</script><span>, we now have quadratic programming problem that can be solved using the libigl active set solver:</span></p><pre spellcheck="false" class="md-fences md-end-block ty-contain-cm modeLoaded" lang="c++"><div class="CodeMirror cm-s-inner CodeMirror-wrap" lang="c++"><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 0px; left: 8px;"><textarea autocorrect="off" autocapitalize="off" spellcheck="false" tabindex="0" style="position: absolute; bottom: -1em; padding: 0px; width: 1000px; height: 1em; outline: none;"></textarea></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 0px; margin-bottom: 0px; border-right-width: 0px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation" style=""><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: 0px; width: 0px;"></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">igl::active_set_params</span> <span class="cm-variable">as</span>;</span></pre></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">Eigen::VectorXd</span> <span class="cm-variable">x</span>; <span class="cm-comment">// (n + |mu|) x 1</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text=""></span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-comment">// B - linear coefficients, set to 0</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-comment">// b - index of lambdas to be fixed</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-comment">// Y - value of the fixed lambdas</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-comment">// Aeq, Beq - empty matrices</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-comment">// Aieq - inequality constraint matrix C_I</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-comment">// Bieq - inequality constraint d, set to a 0 vector with dimension (n + |mu|) x 1</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-comment">// lx, ux - empty vectors</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-comment">// x - [lambda; mu]</span></span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">igl::active_set</span>(<span class="cm-variable">F</span>.<span class="cm-variable">transpose</span>() <span class="cm-operator">*</span> <span class="cm-variable">F</span>, <span class="cm-variable">B</span>, <span class="cm-variable">b</span>, <span class="cm-variable">Y</span>, <span class="cm-variable">Aeq</span>, <span class="cm-variable">Beq</span>, <span class="cm-variable">Aieq</span>, <span class="cm-variable">Bieq</span>, <span class="cm-variable">lx</span>, <span class="cm-variable">ux</span>, <span class="cm-variable">as</span>, <span class="cm-variable">x</span>);</span></pre></div></div></div></div></div><div style="position: absolute; height: 0px; width: 1px; border-bottom-width: 0px; border-bottom-style: solid; border-bottom-color: transparent; top: 312px;"></div><div class="CodeMirror-gutters" style="display: none; height: 312px;"></div></div></div></pre><p><span>where F is:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n342" cid="n342" mdtype="math_block">
<div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display"><span class="MathJax_SVG" id="MathJax-Element-551-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="116.371ex" height="6.058ex" viewBox="0 -1564.5 50104 2608.2" role="img" focusable="false" style="vertical-align: -2.424ex; max-width: 100%;"><defs><path stroke-width="0" id="E2934-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2934-MJMAIN-36" d="M42 313Q42 476 123 571T303 666Q372 666 402 630T432 550Q432 525 418 510T379 495Q356 495 341 509T326 548Q326 592 373 601Q351 623 311 626Q240 626 194 566Q147 500 147 364L148 360Q153 366 156 373Q197 433 263 433H267Q313 433 348 414Q372 400 396 374T435 317Q456 268 456 210V192Q456 169 451 149Q440 90 387 34T253 -22Q225 -22 199 -14T143 16T92 75T56 172T42 313ZM257 397Q227 397 205 380T171 335T154 278T148 216Q148 133 160 97T198 39Q222 21 251 21Q302 21 329 59Q342 77 347 104T352 209Q352 289 347 316T329 361Q302 397 257 397Z"></path><path stroke-width="0" id="E2934-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2934-MJMATHI-46" d="M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z"></path><path stroke-width="0" id="E2934-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E2934-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E2934-MJMAINB-51" d="M64 339Q64 431 96 502T182 614T295 675T420 696Q469 696 481 695Q620 680 709 589T798 339Q798 255 768 184Q720 77 611 26L600 21Q635 -26 682 -26H696Q769 -26 769 0Q769 7 774 12T787 18Q805 18 805 -7V-13Q803 -64 785 -106T737 -171Q720 -183 697 -191Q687 -193 668 -193Q636 -193 613 -182T575 -144T552 -94T532 -27Q531 -23 530 -16T528 -6T526 -3L512 -5Q499 -7 477 -8T431 -10Q393 -10 382 -9Q238 8 151 97T64 339ZM326 80Q326 113 356 138T430 163Q492 163 542 100L553 86Q554 85 561 91T578 108Q637 179 637 330Q637 430 619 498T548 604Q500 641 425 641Q408 641 390 637T347 623T299 590T259 535Q226 469 226 338Q226 244 246 180T318 79L325 74Q326 74 326 80ZM506 58Q480 112 433 112Q412 112 395 104T378 77Q378 44 431 44Q480 44 506 58Z"></path><path stroke-width="0" id="E2934-MJMAINB-30" d="M266 654H280H282Q500 654 524 418Q529 370 529 320Q529 125 456 52Q397 -10 287 -10Q110 -10 63 154Q45 212 45 316Q45 504 113 585Q140 618 185 636T266 654ZM374 548Q347 604 286 604Q247 604 218 575Q197 552 193 511T188 311Q188 159 196 116Q202 87 225 64T287 41Q339 41 367 87Q379 107 382 152T386 329Q386 518 374 548Z"></path><path stroke-width="0" id="E2934-MJMATHI-3B1" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path stroke-width="0" id="E2934-MJMAIN-221A" d="M95 178Q89 178 81 186T72 200T103 230T169 280T207 309Q209 311 212 311H213Q219 311 227 294T281 177Q300 134 312 108L397 -77Q398 -77 501 136T707 565T814 786Q820 800 834 800Q841 800 846 794T853 782V776L620 293L385 -193Q381 -200 366 -200Q357 -200 354 -197Q352 -195 256 15L160 225L144 214Q129 202 113 190T95 178Z"></path><path stroke-width="0" id="E2934-MJMAIN-22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path stroke-width="0" id="E2934-MJMAINB-49" d="M397 0Q370 3 218 3Q65 3 38 0H25V62H139V624H25V686H38Q65 683 218 683Q370 683 397 686H410V624H296V62H410V0H397Z"></path><path stroke-width="0" id="E2934-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E2934-MJSZ3-5B" d="M247 -949V1450H516V1388H309V-887H516V-949H247Z"></path><path stroke-width="0" id="E2934-MJSZ3-5D" d="M11 1388V1450H280V-949H11V-887H218V1388H11Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(48825,0)"><g id="mjx-eqn-6"><use xlink:href="#E2934-MJMAIN-28"></use><use xlink:href="#E2934-MJMAIN-36" x="389" y="0"></use><use xlink:href="#E2934-MJMAIN-29" x="889" y="0"></use></g></g><g transform="translate(21249,0)"><g transform="translate(-15,0)"><use xlink:href="#E2934-MJMATHI-46" x="0" y="0"></use><use xlink:href="#E2934-MJMAIN-3D" x="1026" y="0"></use><g transform="translate(2082,0)"><use xlink:href="#E2934-MJSZ3-5B"></use><g transform="translate(695,0)"><g transform="translate(-15,0)"><use xlink:href="#E2934-MJMAINB-51" x="0" y="681"></use><use xlink:href="#E2934-MJMAINB-30" x="144" y="-719"></use></g><g transform="translate(1849,0)"><use xlink:href="#E2934-MJMAINB-30" x="1028" y="681"></use><g transform="translate(0,-719)"><use xlink:href="#E2934-MJMAIN-221A" x="0" y="-64"></use><rect stroke="none" width="640" height="60" x="833" y="676"></rect><use xlink:href="#E2934-MJMATHI-3B1" x="833" y="0"></use><use xlink:href="#E2934-MJMAIN-22C5" x="1695" y="0"></use><use xlink:href="#E2934-MJMAINB-49" x="2195" y="0"></use></g></g></g><use xlink:href="#E2934-MJSZ3-5D" x="5343" y="-1"></use></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-551">F =
\begin{bmatrix}
\bold{Q} & \bold{0} \\
\bold{0} & \sqrt{\alpha} \cdot \bold{I}
\end{bmatrix}</script></div></div><p><span>The deformed vertices are retrieved by multiplying each </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.153ex" height="2.429ex" viewBox="0 -783.2 927 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3061-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3061-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3061-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3061-MJMATHI-69" x="824" y="-213"></use></g></svg></span><script type="math/tex">\lambda_i</script><span> with </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.421ex" height="2.066ex" viewBox="0 -522.8 1042.4 889.4" role="img" focusable="false" style="vertical-align: -0.851ex;"><defs><path stroke-width="0" id="E3037-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path><path stroke-width="0" id="E3037-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3037-MJMATHI-3BC" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3037-MJMATHI-67" x="852" y="-213"></use></g></svg></span><script type="math/tex">\mu_g</script><span>. </span></p><h2><a name="demo" class="md-header-anchor"></a><span>Demo</span></h2><figure><table><thead><tr><th><span>Original Mesh</span></th><th><span>Deformed Mesh</span></th><th><span>Original Mesh</span></th><th><span>Deformed Mesh</span></th><th><span>Original Mesh</span></th><th><span>Deformed Mesh</span></th></tr></thead><tbody><tr><td><img src="report/orig_bunny.png" alt="original bunny" style="zoom:20%;" /></td><td><img src="report/deform_bunny_front.png" alt="deformed bunny" style="zoom:12%;" /><img src="report/deform_bunny.png" alt="deformed bunny" style="zoom:20%;" /></td><td><img src="report/orig_knight.png" alt="original knight" style="zoom:20%;" /></td><td><img src="report/deform_knight.png" alt="deformed knight" style="zoom:20%;" /></td><td><img src="report/orig_dragon.png" alt="original dragon" style="zoom:20%;" /></td><td><img src="report/d_dragon.png" alt="deformed dragon" style="zoom:15%;" /><img src="report/d_dragon_front.png" alt="deformed dragon" style="zoom:15%;" /></td></tr></tbody></table></figure><p><span> </span><span>The example </span><code>main.cpp</code><span> deforms a mesh along the z-axis (front view). </span></p><h2><a name="implementation-details" class="md-header-anchor"></a><span>Implementation Details</span></h2><h4><a name="getting-bolddsqrtao" class="md-header-anchor"></a><span>Getting </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.608ex" height="2.913ex" viewBox="0 -783.2 2414.6 1254" role="img" focusable="false" style="vertical-align: -1.093ex;"><defs><path stroke-width="0" id="E3045-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E3045-MJMATHI-41" d="M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z"></path><path stroke-width="0" id="E3045-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E3045-MJMAIN-221A" d="M95 178Q89 178 81 186T72 200T103 230T169 280T207 309Q209 311 212 311H213Q219 311 227 294T281 177Q300 134 312 108L397 -77Q398 -77 501 136T707 565T814 786Q820 800 834 800Q841 800 846 794T853 782V776L620 293L385 -193Q381 -200 366 -200Q357 -200 354 -197Q352 -195 256 15L160 225L144 214Q129 202 113 190T95 178Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3045-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-322)"><use transform="scale(0.707)" xlink:href="#E3045-MJMAIN-221A" x="0" y="82"></use><rect stroke="none" width="843" height="42" x="589" y="581"></rect><g transform="translate(589,0)"><use transform="scale(0.707)" xlink:href="#E3045-MJMATHI-41" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E3045-MJMATHI-6F" x="1060" y="626"></use></g></g></g></svg></span><script type="math/tex">\bold{D}_\sqrt{A^o}</script><span> </span></h4><ul><li><span>Dimension: 3n x 3n</span></li></ul><p><span>First, we construct a mass matrix </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.536ex" height="1.945ex" viewBox="0 -783.2 1092 837.3" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E3040-MJMAINB-4D" d="M314 0Q296 3 181 3T48 0H39V62H147V624H39V686H305Q316 679 323 667Q330 653 434 414L546 157L658 414Q766 662 773 674Q778 681 788 686H1052V624H944V62H1052V0H1040Q1016 3 874 3T708 0H696V62H804V341L803 618L786 580Q770 543 735 462T671 315Q540 13 536 9Q528 1 507 1Q485 1 477 9Q472 14 408 162T281 457T217 603Q215 603 215 334V62H323V0H314Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3040-MJMAINB-4D" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{M}</script><span>:</span></p><pre spellcheck="false" class="md-fences md-end-block ty-contain-cm modeLoaded" lang="c++"><div class="CodeMirror cm-s-inner CodeMirror-wrap" lang="c++"><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 0px; left: 8px;"><textarea autocorrect="off" autocapitalize="off" spellcheck="false" tabindex="0" style="position: absolute; bottom: -1em; padding: 0px; width: 1000px; height: 1em; outline: none;"></textarea></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 0px; margin-bottom: 0px; border-right-width: 0px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation"><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: 0px; width: 0px;"></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">Eigen::SparseMatrix</span><span class="cm-operator"><</span><span class="cm-variable-3">double</span><span class="cm-operator">></span> <span class="cm-variable">M</span>;</span></pre></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">igl::massmatrix</span>(<span class="cm-variable">V</span>, <span class="cm-variable">F</span>, <span class="cm-variable">igl::MASSMATRIX_TYPE_VORONOI</span>, <span class="cm-variable">M</span>);</span></pre></div></div></div></div></div><div style="position: absolute; height: 0px; width: 1px; border-bottom-width: 0px; border-bottom-style: solid; border-bottom-color: transparent; top: 52px;"></div><div class="CodeMirror-gutters" style="display: none; height: 52px;"></div></div></div></pre><p><span>Here, </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.536ex" height="1.945ex" viewBox="0 -783.2 1092 837.3" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E3040-MJMAINB-4D" d="M314 0Q296 3 181 3T48 0H39V62H147V624H39V686H305Q316 679 323 667Q330 653 434 414L546 157L658 414Q766 662 773 674Q778 681 788 686H1052V624H944V62H1052V0H1040Q1016 3 874 3T708 0H696V62H804V341L803 618L786 580Q770 543 735 462T671 315Q540 13 536 9Q528 1 507 1Q485 1 477 9Q472 14 408 162T281 457T217 603Q215 603 215 334V62H323V0H314Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3040-MJMAINB-4D" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{M}</script><span> is a diagonal matrix, in which the diagonal entry </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.618ex" height="2.429ex" viewBox="0 -783.2 1557.9 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3041-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path stroke-width="0" id="E3041-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3041-MJMATHI-4D" x="0" y="0"></use><g transform="translate(970,-150)"><use transform="scale(0.707)" xlink:href="#E3041-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3041-MJMATHI-69" x="345" y="0"></use></g></g></svg></span><script type="math/tex">M_{ii}</script><span> is the Voronoi area around </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.209ex" height="1.824ex" viewBox="0 -522.8 951 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3053-MJMAINB-76" d="M401 444Q413 441 495 441Q568 441 574 444H580V382H510L409 156Q348 18 339 6Q331 -4 320 -4Q318 -4 313 -4T303 -3H288Q273 -3 264 12T221 102Q206 135 197 156L96 382H26V444H34Q49 441 145 441Q252 441 270 444H279V382H231L284 264Q335 149 338 149Q338 150 389 264T442 381Q442 382 418 382H394V444H401Z"></path><path stroke-width="0" id="E3053-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3053-MJMAINB-76" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3053-MJMATHI-69" x="858" y="-213"></use></g></svg></span><script type="math/tex">\bold{v}_i</script><span> in the mesh </span><sup class='md-footnote'><a href='#dfref-footnote-2' name='ref-footnote-2'>2</a></sup><span>. We then take the diagonal entry for each vertex, take the square root, and repeat it 3 times (1 for each dimension). The resulting matrix </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.608ex" height="2.913ex" viewBox="0 -783.2 2414.6 1254" role="img" focusable="false" style="vertical-align: -1.093ex;"><defs><path stroke-width="0" id="E3045-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E3045-MJMATHI-41" d="M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z"></path><path stroke-width="0" id="E3045-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E3045-MJMAIN-221A" d="M95 178Q89 178 81 186T72 200T103 230T169 280T207 309Q209 311 212 311H213Q219 311 227 294T281 177Q300 134 312 108L397 -77Q398 -77 501 136T707 565T814 786Q820 800 834 800Q841 800 846 794T853 782V776L620 293L385 -193Q381 -200 366 -200Q357 -200 354 -197Q352 -195 256 15L160 225L144 214Q129 202 113 190T95 178Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3045-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-322)"><use transform="scale(0.707)" xlink:href="#E3045-MJMAIN-221A" x="0" y="82"></use><rect stroke="none" width="843" height="42" x="589" y="581"></rect><g transform="translate(589,0)"><use transform="scale(0.707)" xlink:href="#E3045-MJMATHI-41" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E3045-MJMATHI-6F" x="1060" y="626"></use></g></g></g></svg></span><script type="math/tex">\bold{D}_\sqrt{A^o}</script><span> should look like this:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n193" cid="n193" mdtype="math_block">
<div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display"><span class="MathJax_SVG" id="MathJax-Element-412-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="116.371ex" height="29.646ex" viewBox="0 -6616.6 50104 12764.4" role="img" focusable="false" style="vertical-align: -14.051ex; margin-bottom: -0.227ex; max-width: 100%;"><defs><path stroke-width="0" id="E2935-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2935-MJMAIN-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path stroke-width="0" id="E2935-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2935-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E2935-MJMATHI-41" d="M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z"></path><path stroke-width="0" id="E2935-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E2935-MJMAIN-221A" d="M95 178Q89 178 81 186T72 200T103 230T169 280T207 309Q209 311 212 311H213Q219 311 227 294T281 177Q300 134 312 108L397 -77Q398 -77 501 136T707 565T814 786Q820 800 834 800Q841 800 846 794T853 782V776L620 293L385 -193Q381 -200 366 -200Q357 -200 354 -197Q352 -195 256 15L160 225L144 214Q129 202 113 190T95 178Z"></path><path stroke-width="0" id="E2935-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E2935-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E2935-MJMATHI-4D" d="M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z"></path><path stroke-width="0" id="E2935-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E2935-MJMAIN-2026" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60ZM525 60Q525 84 542 102T585 120Q609 120 627 104T646 61Q646 36 629 18T586 0T543 17T525 60ZM972 60Q972 84 989 102T1032 120Q1056 120 1074 104T1093 61Q1093 36 1076 18T1033 0T990 17T972 60Z"></path><path stroke-width="0" id="E2935-MJMAIN-22EE" d="M78 30Q78 54 95 72T138 90Q162 90 180 74T199 31Q199 6 182 -12T139 -30T96 -13T78 30ZM78 440Q78 464 95 482T138 500Q162 500 180 484T199 441Q199 416 182 398T139 380T96 397T78 440ZM78 840Q78 864 95 882T138 900Q162 900 180 884T199 841Q199 816 182 798T139 780T96 797T78 840Z"></path><path stroke-width="0" id="E2935-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E2935-MJMAIN-22F1" d="M133 760Q133 784 150 802T193 820Q217 820 235 804T254 761Q254 736 237 718T194 700T151 717T133 760ZM580 460Q580 484 597 502T640 520Q664 520 682 504T701 461Q701 436 684 418T641 400T598 417T580 460ZM1027 160Q1027 184 1044 202T1087 220Q1111 220 1129 204T1148 161Q1148 136 1131 118T1088 100T1045 117T1027 160Z"></path><path stroke-width="0" id="E2935-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2935-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E2935-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E2935-MJSZ1-221A" d="M263 249Q264 249 315 130T417 -108T470 -228L725 302Q981 837 982 839Q989 850 1001 850Q1008 850 1013 844T1020 832V826L741 243Q645 43 540 -176Q479 -303 469 -324T453 -348Q449 -350 436 -350L424 -349L315 -96Q206 156 205 156L171 130Q138 104 137 104L111 130L263 249Z"></path><path stroke-width="0" id="E2935-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E2935-MJSZ4-23A1" d="M319 -645V1154H666V1070H403V-645H319Z"></path><path stroke-width="0" id="E2935-MJSZ4-23A3" d="M319 -644V1155H403V-560H666V-644H319Z"></path><path stroke-width="0" id="E2935-MJSZ4-23A2" d="M319 0V602H403V0H319Z"></path><path stroke-width="0" id="E2935-MJSZ4-23A4" d="M0 1070V1154H347V-645H263V1070H0Z"></path><path stroke-width="0" id="E2935-MJSZ4-23A6" d="M263 -560V1155H347V-644H0V-560H263Z"></path><path stroke-width="0" id="E2935-MJSZ4-23A5" d="M263 0V602H347V0H263Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(48825,0)"><g id="mjx-eqn-7"><use xlink:href="#E2935-MJMAIN-28"></use><use xlink:href="#E2935-MJMAIN-37" x="389" y="0"></use><use xlink:href="#E2935-MJMAIN-29" x="889" y="0"></use></g></g><g transform="translate(8092,0)"><g transform="translate(-15,0)"><use xlink:href="#E2935-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-322)"><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-221A" x="0" y="82"></use><rect stroke="none" width="843" height="42" x="589" y="581"></rect><g transform="translate(589,0)"><use transform="scale(0.707)" xlink:href="#E2935-MJMATHI-41" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E2935-MJMATHI-6F" x="1060" y="626"></use></g></g><use xlink:href="#E2935-MJMAIN-3D" x="2692" y="0"></use><g transform="translate(3748,0)"><g transform="translate(0,6549)"><use xlink:href="#E2935-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-10850.84053346402) scale(1,15.119336434325614)"><use xlink:href="#E2935-MJSZ4-23A2"></use></g><use xlink:href="#E2935-MJSZ4-23A3" x="0" y="-11956"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><g transform="translate(0,5709)"><use xlink:href="#E2935-MJMAIN-221A" x="0" y="-20"></use><rect stroke="none" width="1777" height="60" x="833" y="720"></rect><g transform="translate(833,0)"><use xlink:href="#E2935-MJMATHI-4D" x="0" y="0"></use><g transform="translate(970,-150)"><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-30"></use><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-30" x="500" y="0"></use></g></g></g><use xlink:href="#E2935-MJMAIN-30" x="1055" y="3789"></use><use xlink:href="#E2935-MJMAIN-22EE" x="1166" y="-4190"></use><use xlink:href="#E2935-MJMAIN-30" x="1055" y="-5669"></use></g><g transform="translate(3595,0)"><use xlink:href="#E2935-MJMAIN-30" x="1055" y="5709"></use><g transform="translate(0,3789)"><use xlink:href="#E2935-MJMAIN-221A" x="0" y="-20"></use><rect stroke="none" width="1777" height="60" x="833" y="720"></rect><g transform="translate(833,0)"><use xlink:href="#E2935-MJMATHI-4D" x="0" y="0"></use><g transform="translate(970,-150)"><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-30"></use><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-30" x="500" y="0"></use></g></g></g><use xlink:href="#E2935-MJMAIN-30" x="1055" y="-5669"></use></g><g transform="translate(7205,0)"><use xlink:href="#E2935-MJMAIN-2026" x="719" y="5709"></use><g transform="translate(0,2329)"><use xlink:href="#E2935-MJMAIN-221A" x="0" y="-20"></use><rect stroke="none" width="1777" height="60" x="833" y="720"></rect><g transform="translate(833,0)"><use xlink:href="#E2935-MJMATHI-4D" x="0" y="0"></use><g transform="translate(970,-150)"><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-30"></use><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-30" x="500" y="0"></use></g></g></g><use xlink:href="#E2935-MJMAIN-2026" x="719" y="-5669"></use></g><g transform="translate(10815,0)"><g transform="translate(0,862)"><use xlink:href="#E2935-MJMAIN-221A" x="0" y="-13"></use><rect stroke="none" width="1777" height="60" x="833" y="727"></rect><g transform="translate(833,0)"><use xlink:href="#E2935-MJMATHI-4D" x="0" y="0"></use><g transform="translate(970,-150)"><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-31"></use><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-31" x="500" y="0"></use></g></g></g></g><g transform="translate(14426,0)"><g transform="translate(0,-598)"><use xlink:href="#E2935-MJMAIN-221A" x="0" y="-13"></use><rect stroke="none" width="1777" height="60" x="833" y="727"></rect><g transform="translate(833,0)"><use xlink:href="#E2935-MJMATHI-4D" x="0" y="0"></use><g transform="translate(970,-150)"><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-31"></use><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-31" x="500" y="0"></use></g></g></g></g><g transform="translate(18036,0)"><g transform="translate(0,-2058)"><use xlink:href="#E2935-MJMAIN-221A" x="0" y="-13"></use><rect stroke="none" width="1777" height="60" x="833" y="727"></rect><g transform="translate(833,0)"><use xlink:href="#E2935-MJMATHI-4D" x="0" y="0"></use><g transform="translate(970,-150)"><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-31"></use><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-31" x="500" y="0"></use></g></g></g><use xlink:href="#E2935-MJMAIN-30" x="1055" y="-5669"></use></g><g transform="translate(21646,0)"><use xlink:href="#E2935-MJMAIN-22F1" x="0" y="-4190"></use><use xlink:href="#E2935-MJMAIN-2026" x="55" y="-5669"></use></g><g transform="translate(23928,0)"><use xlink:href="#E2935-MJMAIN-30" x="2211" y="5709"></use><use xlink:href="#E2935-MJMAIN-22EE" x="2322" y="3789"></use><g transform="translate(0,-5669)"><use xlink:href="#E2935-MJSZ1-221A" x="0" y="-32"></use><rect stroke="none" width="3922" height="60" x="1000" y="758"></rect><g transform="translate(1000,0)"><use xlink:href="#E2935-MJMATHI-4D" x="0" y="0"></use><g transform="translate(970,-150)"><use transform="scale(0.707)" xlink:href="#E2935-MJMATHI-6E" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-2212" x="600" y="0"></use><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-31" x="1378" y="0"></use><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-2C" x="1878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2935-MJMATHI-6E" x="2156" y="0"></use><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-2212" x="2756" y="0"></use><use transform="scale(0.707)" xlink:href="#E2935-MJMAIN-31" x="3533" y="0"></use></g></g></g></g></g><g transform="translate(29851,6549)"><use xlink:href="#E2935-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-10850.84053346402) scale(1,15.119336434325614)"><use xlink:href="#E2935-MJSZ4-23A5"></use></g><use xlink:href="#E2935-MJSZ4-23A6" x="0" y="-11956"></use></g></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-412">\bold{D}_\sqrt{A^o} =
\begin{bmatrix}
\sqrt{M_{00}} & 0 & \dots & & & & & 0\\
0 & \sqrt{M_{00}} & & & & & &\vdots \\
& & \sqrt{M_{00}} \\
& & & \sqrt{M_{11}} \\
& & & & \sqrt{M_{11}} \\
& & & & & \sqrt{M_{11}} \\
\vdots & & & & & & \ddots \\
0 & 0 & \dots & & & 0 & \dots & \sqrt{M_{n-1,n-1}}
\end{bmatrix}</script></div></div><h4><a name="getting-bolddw" class="md-header-anchor"></a><span>Getting </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.457ex" height="2.313ex" viewBox="0 -768.4 1488.3 995.9" role="img" focusable="false" style="vertical-align: -0.528ex;"><defs><path stroke-width="0" id="E3044-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E3044-MJMATHI-77" d="M580 385Q580 406 599 424T641 443Q659 443 674 425T690 368Q690 339 671 253Q656 197 644 161T609 80T554 12T482 -11Q438 -11 404 5T355 48Q354 47 352 44Q311 -11 252 -11Q226 -11 202 -5T155 14T118 53T104 116Q104 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Q21 293 29 315T52 366T96 418T161 441Q204 441 227 416T250 358Q250 340 217 250T184 111Q184 65 205 46T258 26Q301 26 334 87L339 96V119Q339 122 339 128T340 136T341 143T342 152T345 165T348 182T354 206T362 238T373 281Q402 395 406 404Q419 431 449 431Q468 431 475 421T483 402Q483 389 454 274T422 142Q420 131 420 107V100Q420 85 423 71T442 42T487 26Q558 26 600 148Q609 171 620 213T632 273Q632 306 619 325T593 357T580 385Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3044-MJMAINB-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3044-MJMATHI-77" x="1247" y="-213"></use></g></svg></span><script type="math/tex">\bold{D}_w</script></h4><ul><li><span>Dimension: 3n x 3n</span></li></ul><p><span>Similar to </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.608ex" height="2.913ex" viewBox="0 -783.2 2414.6 1254" role="img" focusable="false" style="vertical-align: -1.093ex;"><defs><path stroke-width="0" id="E3045-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E3045-MJMATHI-41" d="M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z"></path><path stroke-width="0" id="E3045-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E3045-MJMAIN-221A" d="M95 178Q89 178 81 186T72 200T103 230T169 280T207 309Q209 311 212 311H213Q219 311 227 294T281 177Q300 134 312 108L397 -77Q398 -77 501 136T707 565T814 786Q820 800 834 800Q841 800 846 794T853 782V776L620 293L385 -193Q381 -200 366 -200Q357 -200 354 -197Q352 -195 256 15L160 225L144 214Q129 202 113 190T95 178Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3045-MJMAINB-44" x="0" y="0"></use><g transform="translate(882,-322)"><use transform="scale(0.707)" xlink:href="#E3045-MJMAIN-221A" x="0" y="82"></use><rect stroke="none" width="843" height="42" x="589" y="581"></rect><g transform="translate(589,0)"><use transform="scale(0.707)" xlink:href="#E3045-MJMATHI-41" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E3045-MJMATHI-6F" x="1060" y="626"></use></g></g></g></svg></span><script type="math/tex">\bold{D}_\sqrt{A^o}</script><span>, we take the weight vector </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.663ex" height="1.461ex" viewBox="0 -522.8 716 629" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E3046-MJMATHI-77" d="M580 385Q580 406 599 424T641 443Q659 443 674 425T690 368Q690 339 671 253Q656 197 644 161T609 80T554 12T482 -11Q438 -11 404 5T355 48Q354 47 352 44Q311 -11 252 -11Q226 -11 202 -5T155 14T118 53T104 116Q104 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Q21 293 29 315T52 366T96 418T161 441Q204 441 227 416T250 358Q250 340 217 250T184 111Q184 65 205 46T258 26Q301 26 334 87L339 96V119Q339 122 339 128T340 136T341 143T342 152T345 165T348 182T354 206T362 238T373 281Q402 395 406 404Q419 431 449 431Q468 431 475 421T483 402Q483 389 454 274T422 142Q420 131 420 107V100Q420 85 423 71T442 42T487 26Q558 26 600 148Q609 171 620 213T632 273Q632 306 619 325T593 357T580 385Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3046-MJMATHI-77" x="0" y="0"></use></g></svg></span><script type="math/tex">w</script><span> of size n x 1 and repeat it along the diagonal:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n200" cid="n200" mdtype="math_block">
<div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display"><span class="MathJax_SVG" id="MathJax-Element-413-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="116.371ex" height="28.316ex" viewBox="0 -6356.1 50104 12191.5" role="img" focusable="false" style="vertical-align: -13.387ex; margin-bottom: -0.166ex; max-width: 100%;"><defs><path stroke-width="0" id="E2936-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2936-MJMAIN-38" d="M70 417T70 494T124 618T248 666Q319 666 374 624T429 515Q429 485 418 459T392 417T361 389T335 371T324 363L338 354Q352 344 366 334T382 323Q457 264 457 174Q457 95 399 37T249 -22Q159 -22 101 29T43 155Q43 263 172 335L154 348Q133 361 127 368Q70 417 70 494ZM286 386L292 390Q298 394 301 396T311 403T323 413T334 425T345 438T355 454T364 471T369 491T371 513Q371 556 342 586T275 624Q268 625 242 625Q201 625 165 599T128 534Q128 511 141 492T167 463T217 431Q224 426 228 424L286 386ZM250 21Q308 21 350 55T392 137Q392 154 387 169T375 194T353 216T330 234T301 253T274 270Q260 279 244 289T218 306L210 311Q204 311 181 294T133 239T107 157Q107 98 150 60T250 21Z"></path><path stroke-width="0" id="E2936-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2936-MJMAINB-44" d="M39 624V686H270H310H408Q500 686 545 680T638 649Q768 584 805 438Q817 388 817 338Q817 171 702 75Q628 17 515 2Q504 1 270 0H39V62H147V624H39ZM655 337Q655 370 655 390T650 442T639 494T616 540T580 580T526 607T451 623Q443 624 368 624H298V62H377H387H407Q445 62 472 65T540 83T606 129Q629 156 640 195T653 262T655 337Z"></path><path stroke-width="0" id="E2936-MJMATHI-77" d="M580 385Q580 406 599 424T641 443Q659 443 674 425T690 368Q690 339 671 253Q656 197 644 161T609 80T554 12T482 -11Q438 -11 404 5T355 48Q354 47 352 44Q311 -11 252 -11Q226 -11 202 -5T155 14T118 53T104 116Q104 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Q21 293 29 315T52 366T96 418T161 441Q204 441 227 416T250 358Q250 340 217 250T184 111Q184 65 205 46T258 26Q301 26 334 87L339 96V119Q339 122 339 128T340 136T341 143T342 152T345 165T348 182T354 206T362 238T373 281Q402 395 406 404Q419 431 449 431Q468 431 475 421T483 402Q483 389 454 274T422 142Q420 131 420 107V100Q420 85 423 71T442 42T487 26Q558 26 600 148Q609 171 620 213T632 273Q632 306 619 325T593 357T580 385Z"></path><path stroke-width="0" id="E2936-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E2936-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E2936-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E2936-MJMAIN-2026" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60ZM525 60Q525 84 542 102T585 120Q609 120 627 104T646 61Q646 36 629 18T586 0T543 17T525 60ZM972 60Q972 84 989 102T1032 120Q1056 120 1074 104T1093 61Q1093 36 1076 18T1033 0T990 17T972 60Z"></path><path stroke-width="0" id="E2936-MJMAIN-22EE" d="M78 30Q78 54 95 72T138 90Q162 90 180 74T199 31Q199 6 182 -12T139 -30T96 -13T78 30ZM78 440Q78 464 95 482T138 500Q162 500 180 484T199 441Q199 416 182 398T139 380T96 397T78 440ZM78 840Q78 864 95 882T138 900Q162 900 180 884T199 841Q199 816 182 798T139 780T96 797T78 840Z"></path><path stroke-width="0" id="E2936-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E2936-MJMAIN-22F1" d="M133 760Q133 784 150 802T193 820Q217 820 235 804T254 761Q254 736 237 718T194 700T151 717T133 760ZM580 460Q580 484 597 502T640 520Q664 520 682 504T701 461Q701 436 684 418T641 400T598 417T580 460ZM1027 160Q1027 184 1044 202T1087 220Q1111 220 1129 204T1148 161Q1148 136 1131 118T1088 100T1045 117T1027 160Z"></path><path stroke-width="0" id="E2936-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2936-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E2936-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E2936-MJSZ4-23A1" d="M319 -645V1154H666V1070H403V-645H319Z"></path><path stroke-width="0" id="E2936-MJSZ4-23A3" d="M319 -644V1155H403V-560H666V-644H319Z"></path><path stroke-width="0" id="E2936-MJSZ4-23A2" d="M319 0V602H403V0H319Z"></path><path stroke-width="0" id="E2936-MJSZ4-23A4" d="M0 1070V1154H347V-645H263V1070H0Z"></path><path stroke-width="0" id="E2936-MJSZ4-23A6" d="M263 -560V1155H347V-644H0V-560H263Z"></path><path stroke-width="0" id="E2936-MJSZ4-23A5" d="M263 0V602H347V0H263Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(48825,0)"><g id="mjx-eqn-8"><use xlink:href="#E2936-MJMAIN-28"></use><use xlink:href="#E2936-MJMAIN-38" x="389" y="0"></use><use xlink:href="#E2936-MJMAIN-29" x="889" y="0"></use></g></g><g transform="translate(14265,0)"><g transform="translate(-15,0)"><use xlink:href="#E2936-MJMAINB-44" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2936-MJMATHI-77" x="1247" y="-213"></use><use xlink:href="#E2936-MJMAIN-3D" x="1766" y="0"></use><g transform="translate(2821,0)"><g transform="translate(0,6263)"><use xlink:href="#E2936-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-10278.982756057296) scale(1,14.169406571523748)"><use xlink:href="#E2936-MJSZ4-23A2"></use></g><use xlink:href="#E2936-MJSZ4-23A3" x="0" y="-11384"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><g transform="translate(0,5463)"><use xlink:href="#E2936-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2936-MJMAIN-30" x="1012" y="-213"></use></g><use xlink:href="#E2936-MJMAIN-30" x="334" y="3563"></use><use xlink:href="#E2936-MJMAIN-22EE" x="445" y="-4157"></use><use xlink:href="#E2936-MJMAIN-30" x="334" y="-5557"></use></g><g transform="translate(2155,0)"><use xlink:href="#E2936-MJMAIN-30" x="334" y="5463"></use><g transform="translate(0,3563)"><use xlink:href="#E2936-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2936-MJMAIN-30" x="1012" y="-213"></use></g><use xlink:href="#E2936-MJMAIN-30" x="334" y="-5557"></use></g><g transform="translate(4324,0)"><use xlink:href="#E2936-MJMAIN-2026" x="0" y="5463"></use><g transform="translate(1,2163)"><use xlink:href="#E2936-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2936-MJMAIN-30" x="1012" y="-213"></use></g><use xlink:href="#E2936-MJMAIN-2026" x="0" y="-5557"></use></g><g transform="translate(6496,0)"><g transform="translate(0,763)"><use xlink:href="#E2936-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2936-MJMAIN-31" x="1012" y="-213"></use></g></g><g transform="translate(8666,0)"><g transform="translate(0,-637)"><use xlink:href="#E2936-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2936-MJMAIN-31" x="1012" y="-213"></use></g></g><g transform="translate(10835,0)"><g transform="translate(0,-2037)"><use xlink:href="#E2936-MJMATHI-77" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2936-MJMAIN-31" x="1012" y="-213"></use></g><use xlink:href="#E2936-MJMAIN-30" x="334" y="-5557"></use></g><g transform="translate(13005,0)"><use xlink:href="#E2936-MJMAIN-22F1" x="0" y="-4157"></use><use xlink:href="#E2936-MJMAIN-2026" x="55" y="-5557"></use></g><g transform="translate(15287,0)"><use xlink:href="#E2936-MJMAIN-30" x="821" y="5463"></use><use xlink:href="#E2936-MJMAIN-22EE" x="932" y="3563"></use><g transform="translate(0,-5557)"><use xlink:href="#E2936-MJMATHI-77" x="0" y="0"></use><g transform="translate(716,-150)"><use transform="scale(0.707)" xlink:href="#E2936-MJMATHI-6E" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2936-MJMAIN-2212" x="600" y="0"></use><use transform="scale(0.707)" xlink:href="#E2936-MJMAIN-31" x="1378" y="0"></use></g></g></g></g><g transform="translate(18432,6263)"><use xlink:href="#E2936-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-10278.982756057296) scale(1,14.169406571523748)"><use xlink:href="#E2936-MJSZ4-23A5"></use></g><use xlink:href="#E2936-MJSZ4-23A6" x="0" y="-11384"></use></g></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-413">\bold{D}_w =
\begin{bmatrix}
w_0 & 0 & \dots & & & & & 0\\
0 & w_0 & & & & & &\vdots \\
& & w_0 \\
& & & w_1 \\
& & & & w_1 \\
& & & & & w_1 \\
\vdots & & & & & & \ddots \\
0 & 0 & \dots & & & 0 & \dots & w_{n-1}
\end{bmatrix}</script></div></div><h4><a name="getting-boldtildelo" class="md-header-anchor"></a><span>Getting </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.636ex" height="2.55ex" viewBox="0 -1043.7 1134.9 1097.7" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E3049-MJMAINB-4C" d="M643 285Q641 280 629 148T612 4V0H39V62H147V624H39V686H51Q75 683 228 683Q415 685 425 686H439V624H304V62H352H378Q492 62 539 138Q551 156 558 178T569 214T576 255T581 289H643V285Z"></path><path stroke-width="0" id="E3049-MJMAINB-7E" d="M343 202Q320 202 278 225T215 249Q181 249 146 214L134 202L115 219Q111 222 106 226T98 234L96 236Q158 306 165 313Q199 344 230 344Q239 344 244 343Q262 339 300 318T359 297Q393 297 428 332L440 344L459 327Q463 324 468 320T476 312L478 310Q416 240 409 233Q375 202 343 202Z"></path><path stroke-width="0" id="E3049-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3049-MJMAINB-4C" x="0" y="0"></use><use xlink:href="#E3049-MJMAINB-7E" x="58" y="562"></use><use transform="scale(0.707)" xlink:href="#E3049-MJMATHI-6F" x="978" y="895"></use></g></svg></span><script type="math/tex">\bold{\tilde{L}}^o</script></h4><ul><li><span>Dimension: 3n x 3n</span></li></ul><p><span>First, we compute the cotangent Laplace-Beltrami operator </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.636ex" height="1.945ex" viewBox="0 -783.2 1134.9 837.3" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E3048-MJMAINB-4C" d="M643 285Q641 280 629 148T612 4V0H39V62H147V624H39V686H51Q75 683 228 683Q415 685 425 686H439V624H304V62H352H378Q492 62 539 138Q551 156 558 178T569 214T576 255T581 289H643V285Z"></path><path stroke-width="0" id="E3048-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3048-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3048-MJMATHI-6F" x="978" y="584"></use></g></svg></span><script type="math/tex">\bold{L}^o</script><span>:</span></p><pre spellcheck="false" class="md-fences md-end-block ty-contain-cm modeLoaded" lang="c++"><div class="CodeMirror cm-s-inner CodeMirror-wrap" lang="c++"><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 0px; left: 8px;"><textarea autocorrect="off" autocapitalize="off" spellcheck="false" tabindex="0" style="position: absolute; bottom: -1em; padding: 0px; width: 1000px; height: 1em; outline: none;"></textarea></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 0px; margin-bottom: 0px; border-right-width: 0px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation"><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: 0px; width: 0px;"></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">Eigen::SparseMatrix</span><span class="cm-operator"><</span><span class="cm-variable-3">double</span><span class="cm-operator">></span> <span class="cm-variable">cot</span>, <span class="cm-variable">M_inv</span>, <span class="cm-variable">L</span>;</span></pre></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">igl::cotmatrix</span>(<span class="cm-variable">V</span>, <span class="cm-variable">F</span>, <span class="cm-variable">cot</span>);</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">igl::invert_diag</span>(<span class="cm-variable">M</span>, <span class="cm-variable">M_inv</span>);</span></pre><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">L</span> <span class="cm-operator">=</span> <span class="cm-variable">M_inv</span> <span class="cm-operator">*</span> <span class="cm-variable">cot</span>;</span></pre></div></div></div></div></div><div style="position: absolute; height: 0px; width: 1px; border-bottom-width: 0px; border-bottom-style: solid; border-bottom-color: transparent; top: 104px;"></div><div class="CodeMirror-gutters" style="display: none; height: 104px;"></div></div></div></pre><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.636ex" height="2.55ex" viewBox="0 -1043.7 1134.9 1097.7" role="img" focusable="false" style="vertical-align: -0.126ex;"><defs><path stroke-width="0" id="E3049-MJMAINB-4C" d="M643 285Q641 280 629 148T612 4V0H39V62H147V624H39V686H51Q75 683 228 683Q415 685 425 686H439V624H304V62H352H378Q492 62 539 138Q551 156 558 178T569 214T576 255T581 289H643V285Z"></path><path stroke-width="0" id="E3049-MJMAINB-7E" d="M343 202Q320 202 278 225T215 249Q181 249 146 214L134 202L115 219Q111 222 106 226T98 234L96 236Q158 306 165 313Q199 344 230 344Q239 344 244 343Q262 339 300 318T359 297Q393 297 428 332L440 344L459 327Q463 324 468 320T476 312L478 310Q416 240 409 233Q375 202 343 202Z"></path><path stroke-width="0" id="E3049-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3049-MJMAINB-4C" x="0" y="0"></use><use xlink:href="#E3049-MJMAINB-7E" x="58" y="562"></use><use transform="scale(0.707)" xlink:href="#E3049-MJMATHI-6F" x="978" y="895"></use></g></svg></span><script type="math/tex">\bold{\tilde{L}}^o</script><span> is the Kronecker product between the cotangent matrix and 3 x 3 identity matrix:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n208" cid="n208" mdtype="math_block">
<div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display"><span class="MathJax_SVG" id="MathJax-Element-414-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="116.371ex" height="3.154ex" viewBox="0 -939.5 50104 1358.2" role="img" focusable="false" style="vertical-align: -0.972ex; max-width: 100%;"><defs><path stroke-width="0" id="E2937-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2937-MJMAIN-39" d="M352 287Q304 211 232 211Q154 211 104 270T44 396Q42 412 42 436V444Q42 537 111 606Q171 666 243 666Q245 666 249 666T257 665H261Q273 665 286 663T323 651T370 619T413 560Q456 472 456 334Q456 194 396 97Q361 41 312 10T208 -22Q147 -22 108 7T68 93T121 149Q143 149 158 135T173 96Q173 78 164 65T148 49T135 44L131 43Q131 41 138 37T164 27T206 22H212Q272 22 313 86Q352 142 352 280V287ZM244 248Q292 248 321 297T351 430Q351 508 343 542Q341 552 337 562T323 588T293 615T246 625Q208 625 181 598Q160 576 154 546T147 441Q147 358 152 329T172 282Q197 248 244 248Z"></path><path stroke-width="0" id="E2937-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2937-MJMAINB-4C" d="M643 285Q641 280 629 148T612 4V0H39V62H147V624H39V686H51Q75 683 228 683Q415 685 425 686H439V624H304V62H352H378Q492 62 539 138Q551 156 558 178T569 214T576 255T581 289H643V285Z"></path><path stroke-width="0" id="E2937-MJMAINB-7E" d="M343 202Q320 202 278 225T215 249Q181 249 146 214L134 202L115 219Q111 222 106 226T98 234L96 236Q158 306 165 313Q199 344 230 344Q239 344 244 343Q262 339 300 318T359 297Q393 297 428 332L440 344L459 327Q463 324 468 320T476 312L478 310Q416 240 409 233Q375 202 343 202Z"></path><path stroke-width="0" id="E2937-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E2937-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E2937-MJMAIN-2297" d="M56 250Q56 394 156 488T384 583Q530 583 626 485T722 250Q722 110 625 14T390 -83Q249 -83 153 14T56 250ZM582 471Q531 510 496 523Q446 542 381 542Q324 542 272 519T196 471L389 278L485 375L582 471ZM167 442Q95 362 95 250Q95 137 167 58L359 250L167 442ZM610 58Q682 138 682 250Q682 363 610 442L418 250L610 58ZM196 29Q209 16 230 2T295 -27T388 -42Q409 -42 429 -40T465 -33T496 -23T522 -11T544 1T561 13T574 22T582 29L388 222L196 29Z"></path><path stroke-width="0" id="E2937-MJMAINB-49" d="M397 0Q370 3 218 3Q65 3 38 0H25V62H139V624H25V686H38Q65 683 218 683Q370 683 397 686H410V624H296V62H410V0H397Z"></path><path stroke-width="0" id="E2937-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(48825,0)"><g id="mjx-eqn-9" transform="translate(0,-98)"><use xlink:href="#E2937-MJMAIN-28"></use><use xlink:href="#E2937-MJMAIN-39" x="389" y="0"></use><use xlink:href="#E2937-MJMAIN-29" x="889" y="0"></use></g></g><g transform="translate(22368,0)"><g transform="translate(-15,0)"><g transform="translate(0,-98)"><use xlink:href="#E2937-MJMAINB-4C" x="0" y="0"></use><use xlink:href="#E2937-MJMAINB-7E" x="58" y="562"></use><use transform="scale(0.707)" xlink:href="#E2937-MJMATHI-6F" x="978" y="895"></use><use xlink:href="#E2937-MJMAIN-3D" x="1412" y="0"></use><g transform="translate(2468,0)"><use xlink:href="#E2937-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2937-MJMATHI-6F" x="978" y="584"></use></g><use xlink:href="#E2937-MJMAIN-2297" x="3825" y="0"></use><g transform="translate(4825,0)"><use xlink:href="#E2937-MJMAINB-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2937-MJMAIN-33" x="616" y="-213"></use></g></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-414">\bold{\tilde{L}}^o = \bold{L}^o \otimes \bold{I}_3</script></div></div><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n209" cid="n209" mdtype="math_block">
<div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display"><span class="MathJax_SVG" id="MathJax-Element-415-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="116.371ex" height="26.501ex" viewBox="0 -5939.5 50104 11410.2" role="img" focusable="false" style="vertical-align: -12.706ex; max-width: 100%;"><defs><path stroke-width="0" id="E2938-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2938-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E2938-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E2938-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2938-MJMAINB-4C" d="M643 285Q641 280 629 148T612 4V0H39V62H147V624H39V686H51Q75 683 228 683Q415 685 425 686H439V624H304V62H352H378Q492 62 539 138Q551 156 558 178T569 214T576 255T581 289H643V285Z"></path><path stroke-width="0" id="E2938-MJMAINB-7E" d="M343 202Q320 202 278 225T215 249Q181 249 146 214L134 202L115 219Q111 222 106 226T98 234L96 236Q158 306 165 313Q199 344 230 344Q239 344 244 343Q262 339 300 318T359 297Q393 297 428 332L440 344L459 327Q463 324 468 320T476 312L478 310Q416 240 409 233Q375 202 343 202Z"></path><path stroke-width="0" id="E2938-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E2938-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E2938-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E2938-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E2938-MJSZ4-23A1" d="M319 -645V1154H666V1070H403V-645H319Z"></path><path stroke-width="0" id="E2938-MJSZ4-23A3" d="M319 -644V1155H403V-560H666V-644H319Z"></path><path stroke-width="0" id="E2938-MJSZ4-23A2" d="M319 0V602H403V0H319Z"></path><path stroke-width="0" id="E2938-MJSZ4-23A4" d="M0 1070V1154H347V-645H263V1070H0Z"></path><path stroke-width="0" id="E2938-MJSZ4-23A6" d="M263 -560V1155H347V-644H0V-560H263Z"></path><path stroke-width="0" id="E2938-MJSZ4-23A5" d="M263 0V602H347V0H263Z"></path><path stroke-width="0" id="E2938-MJMAIN-2026" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60ZM525 60Q525 84 542 102T585 120Q609 120 627 104T646 61Q646 36 629 18T586 0T543 17T525 60ZM972 60Q972 84 989 102T1032 120Q1056 120 1074 104T1093 61Q1093 36 1076 18T1033 0T990 17T972 60Z"></path><path stroke-width="0" id="E2938-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E2938-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2938-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E2938-MJMAIN-22EE" d="M78 30Q78 54 95 72T138 90Q162 90 180 74T199 31Q199 6 182 -12T139 -30T96 -13T78 30ZM78 440Q78 464 95 482T138 500Q162 500 180 484T199 441Q199 416 182 398T139 380T96 397T78 440ZM78 840Q78 864 95 882T138 900Q162 900 180 884T199 841Q199 816 182 798T139 780T96 797T78 840Z"></path><path stroke-width="0" id="E2938-MJMAIN-22F1" d="M133 760Q133 784 150 802T193 820Q217 820 235 804T254 761Q254 736 237 718T194 700T151 717T133 760ZM580 460Q580 484 597 502T640 520Q664 520 682 504T701 461Q701 436 684 418T641 400T598 417T580 460ZM1027 160Q1027 184 1044 202T1087 220Q1111 220 1129 204T1148 161Q1148 136 1131 118T1088 100T1045 117T1027 160Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(48325,0)"><g id="mjx-eqn-10"><use xlink:href="#E2938-MJMAIN-28"></use><use xlink:href="#E2938-MJMAIN-31" x="389" y="0"></use><use xlink:href="#E2938-MJMAIN-30" x="889" y="0"></use><use xlink:href="#E2938-MJMAIN-29" x="1389" y="0"></use></g></g><g transform="translate(8398,0)"><g transform="translate(-15,0)"><use xlink:href="#E2938-MJMAINB-4C" x="0" y="0"></use><use xlink:href="#E2938-MJMAINB-7E" x="58" y="562"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6F" x="978" y="895"></use><use xlink:href="#E2938-MJMAIN-3D" x="1412" y="0"></use><g transform="translate(2468,0)"><g transform="translate(0,5865)"><use xlink:href="#E2938-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-9481.61693398826) scale(1,12.844878627887475)"><use xlink:href="#E2938-MJSZ4-23A2"></use></g><use xlink:href="#E2938-MJSZ4-23A3" x="0" y="-10587"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><g transform="translate(1756,3437)"><g transform="translate(0,2244)"><use xlink:href="#E2938-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-2239.3200475583126) scale(1,0.8144851288344063)"><use xlink:href="#E2938-MJSZ4-23A2"></use></g><use xlink:href="#E2938-MJSZ4-23A3" x="0" y="-3345"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><g transform="translate(0,1444)"><use xlink:href="#E2938-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6F" x="978" y="584"></use><g transform="translate(692,-248)"><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-30"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-30" x="500" y="0"></use></g></g></g><g transform="translate(2484,0)"><g transform="translate(0,-19)"><use xlink:href="#E2938-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6F" x="978" y="584"></use><g transform="translate(692,-248)"><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-30"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-30" x="500" y="0"></use></g></g></g><g transform="translate(4983,0)"><g transform="translate(0,-1482)"><use xlink:href="#E2938-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6F" x="978" y="584"></use><g transform="translate(692,-248)"><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-30"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-30" x="500" y="0"></use></g></g></g></g><g transform="translate(7483,2244)"><use xlink:href="#E2938-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-2239.3200475583126) scale(1,0.8144851288344063)"><use xlink:href="#E2938-MJSZ4-23A5"></use></g><use xlink:href="#E2938-MJSZ4-23A6" x="0" y="-3345"></use></g></g><use xlink:href="#E2938-MJMAIN-22EE" x="5692" y="-410"></use><g transform="translate(0,-3438)"><g transform="translate(0,2427)"><use xlink:href="#E2938-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-2606.30846699413) scale(1,1.4241004435118438)"><use xlink:href="#E2938-MJSZ4-23A2"></use></g><use xlink:href="#E2938-MJSZ4-23A3" x="0" y="-3712"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><g transform="translate(0,1627)"><use xlink:href="#E2938-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6F" x="978" y="584"></use><g transform="translate(692,-248)"><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6E" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2212" x="600" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-31" x="1378" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2C" x="1878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-30" x="2156" y="0"></use></g></g></g><g transform="translate(3655,0)"><g transform="translate(0,42)"><use xlink:href="#E2938-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6F" x="978" y="584"></use><g transform="translate(692,-248)"><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6E" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2212" x="600" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-31" x="1378" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2C" x="1878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-30" x="2156" y="0"></use></g></g></g><g transform="translate(7325,0)"><g transform="translate(0,-1543)"><use xlink:href="#E2938-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6F" x="978" y="584"></use><g transform="translate(692,-248)"><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6E" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2212" x="600" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-31" x="1378" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2C" x="1878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-30" x="2156" y="0"></use></g></g></g></g><g transform="translate(10996,2427)"><use xlink:href="#E2938-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-2606.30846699413) scale(1,1.4241004435118438)"><use xlink:href="#E2938-MJSZ4-23A5"></use></g><use xlink:href="#E2938-MJSZ4-23A6" x="0" y="-3712"></use></g></g></g><g transform="translate(12649,0)"><use xlink:href="#E2938-MJMAIN-2026" x="55" y="3437"></use><use xlink:href="#E2938-MJMAIN-22F1" x="0" y="-410"></use></g><g transform="translate(14931,0)"><g transform="translate(1461,3437)"><g transform="translate(0,2427)"><use xlink:href="#E2938-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-2606.30846699413) scale(1,1.4241004435118438)"><use xlink:href="#E2938-MJSZ4-23A2"></use></g><use xlink:href="#E2938-MJSZ4-23A3" x="0" y="-3712"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><g transform="translate(0,1627)"><use xlink:href="#E2938-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6F" x="978" y="584"></use><g transform="translate(692,-248)"><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-30" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2C" x="500" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6E" x="778" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2212" x="1378" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-31" x="2156" y="0"></use></g></g></g><g transform="translate(3655,0)"><g transform="translate(0,42)"><use xlink:href="#E2938-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6F" x="978" y="584"></use><g transform="translate(692,-248)"><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-30" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2C" x="500" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6E" x="778" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2212" x="1378" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-31" x="2156" y="0"></use></g></g></g><g transform="translate(7325,0)"><g transform="translate(0,-1543)"><use xlink:href="#E2938-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6F" x="978" y="584"></use><g transform="translate(692,-248)"><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-30" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2C" x="500" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6E" x="778" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2212" x="1378" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-31" x="2156" y="0"></use></g></g></g></g><g transform="translate(10996,2427)"><use xlink:href="#E2938-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-2606.30846699413) scale(1,1.4241004435118438)"><use xlink:href="#E2938-MJSZ4-23A5"></use></g><use xlink:href="#E2938-MJSZ4-23A6" x="0" y="-3712"></use></g></g><use xlink:href="#E2938-MJMAIN-22EE" x="7154" y="-410"></use><g transform="translate(0,-3438)"><g transform="translate(0,2427)"><use xlink:href="#E2938-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-2606.30846699413) scale(1,1.4241004435118438)"><use xlink:href="#E2938-MJSZ4-23A2"></use></g><use xlink:href="#E2938-MJSZ4-23A3" x="0" y="-3712"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><g transform="translate(0,1627)"><use xlink:href="#E2938-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6F" x="978" y="584"></use><g transform="translate(692,-248)"><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6E" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2212" x="600" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-31" x="1378" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2C" x="1878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6E" x="2156" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2212" x="2756" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-31" x="3533" y="0"></use></g></g></g><g transform="translate(4630,0)"><g transform="translate(0,42)"><use xlink:href="#E2938-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6F" x="978" y="584"></use><g transform="translate(692,-248)"><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6E" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2212" x="600" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-31" x="1378" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2C" x="1878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6E" x="2156" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2212" x="2756" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-31" x="3533" y="0"></use></g></g></g><g transform="translate(9274,0)"><g transform="translate(0,-1543)"><use xlink:href="#E2938-MJMAINB-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6F" x="978" y="584"></use><g transform="translate(692,-248)"><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6E" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2212" x="600" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-31" x="1378" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2C" x="1878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMATHI-6E" x="2156" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-2212" x="2756" y="0"></use><use transform="scale(0.707)" xlink:href="#E2938-MJMAIN-31" x="3533" y="0"></use></g></g></g></g><g transform="translate(13920,2427)"><use xlink:href="#E2938-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-2606.30846699413) scale(1,1.4241004435118438)"><use xlink:href="#E2938-MJSZ4-23A5"></use></g><use xlink:href="#E2938-MJSZ4-23A6" x="0" y="-3712"></use></g></g></g></g><g transform="translate(30519,5865)"><use xlink:href="#E2938-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-9481.61693398826) scale(1,12.844878627887475)"><use xlink:href="#E2938-MJSZ4-23A5"></use></g><use xlink:href="#E2938-MJSZ4-23A6" x="0" y="-10587"></use></g></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-415">\bold{\tilde{L}}^o =
\begin{bmatrix}
\begin{bmatrix}
\textbf{L}^o_{00} && \\
&\textbf{L}^o_{00}& \\
&&\textbf{L}^o_{00} \\
\end{bmatrix} & \dots &
\begin{bmatrix}
\textbf{L}^o_{0,n-1} && \\
&\textbf{L}^o_{0,n-1}& \\
&&\textbf{L}^o_{0,n-1} \\
\end{bmatrix}\\
\vdots & \ddots &\vdots \\
\begin{bmatrix}
\textbf{L}^o_{n-1,0} && \\
&\textbf{L}^o_{n-1,0}& \\
&&\textbf{L}^o_{n-1,0} \\
\end{bmatrix} & &
\begin{bmatrix}
\textbf{L}^o_{n-1,n-1} && \\
&\textbf{L}^o_{n-1,n-1}& \\
&&\textbf{L}^o_{n-1,n-1} \\
\end{bmatrix} \\
\end{bmatrix}</script></div></div><h4><a name="getting-bolds" class="md-header-anchor"></a><span>Getting </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.484ex" height="2.066ex" viewBox="0 -783.2 639 889.4" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E3051-MJMAINB-53" d="M64 493Q64 582 120 636T264 696H272Q280 697 285 697Q380 697 454 645L480 669Q484 672 488 676T495 683T500 688T504 691T508 693T511 695T514 696T517 697T522 697Q536 697 539 691T542 652V577Q542 557 542 532T543 500Q543 472 540 465T524 458H511H505Q489 458 485 461T479 478Q472 529 449 564T393 614T336 634T287 639Q228 639 203 610T177 544Q177 517 195 493T247 457Q253 454 343 436T475 391Q574 326 574 207V200Q574 163 559 120Q517 12 389 -9Q380 -10 346 -10Q308 -10 275 -5T221 7T184 22T160 35T151 40L126 17Q122 14 118 10T111 3T106 -2T102 -5T98 -7T95 -9T92 -10T89 -11T84 -11Q70 -11 67 -4T64 35V108Q64 128 64 153T63 185Q63 203 63 211T69 223T77 227T94 228H100Q118 228 122 225T126 205Q130 125 193 88T345 51Q408 51 434 82T460 157Q460 196 439 221T388 257Q384 259 305 276T221 295Q155 313 110 366T64 493Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3051-MJMAINB-53" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{S}</script></h4><ul><li><span>Dimension: 3n x n</span></li><li><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.484ex" height="2.066ex" viewBox="0 -783.2 639 889.4" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E3051-MJMAINB-53" d="M64 493Q64 582 120 636T264 696H272Q280 697 285 697Q380 697 454 645L480 669Q484 672 488 676T495 683T500 688T504 691T508 693T511 695T514 696T517 697T522 697Q536 697 539 691T542 652V577Q542 557 542 532T543 500Q543 472 540 465T524 458H511H505Q489 458 485 461T479 478Q472 529 449 564T393 614T336 634T287 639Q228 639 203 610T177 544Q177 517 195 493T247 457Q253 454 343 436T475 391Q574 326 574 207V200Q574 163 559 120Q517 12 389 -9Q380 -10 346 -10Q308 -10 275 -5T221 7T184 22T160 35T151 40L126 17Q122 14 118 10T111 3T106 -2T102 -5T98 -7T95 -9T92 -10T89 -11T84 -11Q70 -11 67 -4T64 35V108Q64 128 64 153T63 185Q63 203 63 211T69 223T77 227T94 228H100Q118 228 122 225T126 205Q130 125 193 88T345 51Q408 51 434 82T460 157Q460 196 439 221T388 257Q384 259 305 276T221 295Q155 313 110 366T64 493Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3051-MJMAINB-53" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{S}</script><span> is a selector matrix that associates each </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.153ex" height="2.429ex" viewBox="0 -783.2 927 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3061-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3061-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3061-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3061-MJMATHI-69" x="824" y="-213"></use></g></svg></span><script type="math/tex">\lambda_i</script><span> with the x, y, z coordinates of </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.209ex" height="1.824ex" viewBox="0 -522.8 951 785.2" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3053-MJMAINB-76" d="M401 444Q413 441 495 441Q568 441 574 444H580V382H510L409 156Q348 18 339 6Q331 -4 320 -4Q318 -4 313 -4T303 -3H288Q273 -3 264 12T221 102Q206 135 197 156L96 382H26V444H34Q49 441 145 441Q252 441 270 444H279V382H231L284 264Q335 149 338 149Q338 150 389 264T442 381Q442 382 418 382H394V444H401Z"></path><path stroke-width="0" id="E3053-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3053-MJMAINB-76" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3053-MJMATHI-69" x="858" y="-213"></use></g></svg></span><script type="math/tex">\bold{v}_i</script><span>: </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="13.299ex" height="2.913ex" viewBox="0 -939.5 5725.8 1254" role="img" focusable="false" style="vertical-align: -0.73ex;"><defs><path stroke-width="0" id="E3054-MJMAINB-49" d="M397 0Q370 3 218 3Q65 3 38 0H25V62H139V624H25V686H38Q65 683 218 683Q370 683 397 686H410V624H296V62H410V0H397Z"></path><path stroke-width="0" id="E3054-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3054-MJMAIN-2297" d="M56 250Q56 394 156 488T384 583Q530 583 626 485T722 250Q722 110 625 14T390 -83Q249 -83 153 14T56 250ZM582 471Q531 510 496 523Q446 542 381 542Q324 542 272 519T196 471L389 278L485 375L582 471ZM167 442Q95 362 95 250Q95 137 167 58L359 250L167 442ZM610 58Q682 138 682 250Q682 363 610 442L418 250L610 58ZM196 29Q209 16 230 2T295 -27T388 -42Q409 -42 429 -40T465 -33T496 -23T522 -11T544 1T561 13T574 22T582 29L388 222L196 29Z"></path><path stroke-width="0" id="E3054-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E3054-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E3054-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E3054-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E3054-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3054-MJMAINB-49" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3054-MJMATHI-6E" x="616" y="-213"></use><use xlink:href="#E3054-MJMAIN-2297" x="1182" y="0"></use><use xlink:href="#E3054-MJMAIN-5B" x="2182" y="0"></use><use xlink:href="#E3054-MJMAIN-31" x="2460" y="0"></use><use xlink:href="#E3054-MJMAIN-2C" x="2960" y="0"></use><use xlink:href="#E3054-MJMAIN-31" x="3405" y="0"></use><use xlink:href="#E3054-MJMAIN-2C" x="3905" y="0"></use><use xlink:href="#E3054-MJMAIN-31" x="4350" y="0"></use><g transform="translate(4850,0)"><use xlink:href="#E3054-MJMAIN-5D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3054-MJMATHI-54" x="393" y="513"></use></g></g></svg></span><script type="math/tex">\bold{I}_n \otimes [1,1,1]^T</script></li></ul><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n217" cid="n217" mdtype="math_block">
<div class="md-rawblock-container md-math-container" contenteditable="false" tabindex="-1">
<div class="MathJax_SVG_Display"><span class="MathJax_SVG" id="MathJax-Element-2325-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="116.371ex" height="23.84ex" viewBox="0 -5366.6 50104 10264.4" role="img" focusable="false" style="vertical-align: -11.376ex; max-width: 100%;"><defs><path stroke-width="0" id="E3063-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E3063-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E3063-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E3063-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E3063-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E3063-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E3063-MJSZ4-23A1" d="M319 -645V1154H666V1070H403V-645H319Z"></path><path stroke-width="0" id="E3063-MJSZ4-23A3" d="M319 -644V1155H403V-560H666V-644H319Z"></path><path stroke-width="0" id="E3063-MJSZ4-23A2" d="M319 0V602H403V0H319Z"></path><path stroke-width="0" id="E3063-MJSZ4-23A4" d="M0 1070V1154H347V-645H263V1070H0Z"></path><path stroke-width="0" id="E3063-MJSZ4-23A6" d="M263 -560V1155H347V-644H0V-560H263Z"></path><path stroke-width="0" id="E3063-MJSZ4-23A5" d="M263 0V602H347V0H263Z"></path><path stroke-width="0" id="E3063-MJMAIN-2026" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60ZM525 60Q525 84 542 102T585 120Q609 120 627 104T646 61Q646 36 629 18T586 0T543 17T525 60ZM972 60Q972 84 989 102T1032 120Q1056 120 1074 104T1093 61Q1093 36 1076 18T1033 0T990 17T972 60Z"></path><path stroke-width="0" id="E3063-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E3063-MJMAIN-22EE" d="M78 30Q78 54 95 72T138 90Q162 90 180 74T199 31Q199 6 182 -12T139 -30T96 -13T78 30ZM78 440Q78 464 95 482T138 500Q162 500 180 484T199 441Q199 416 182 398T139 380T96 397T78 440ZM78 840Q78 864 95 882T138 900Q162 900 180 884T199 841Q199 816 182 798T139 780T96 797T78 840Z"></path><path stroke-width="0" id="E3063-MJMAIN-22F1" d="M133 760Q133 784 150 802T193 820Q217 820 235 804T254 761Q254 736 237 718T194 700T151 717T133 760ZM580 460Q580 484 597 502T640 520Q664 520 682 504T701 461Q701 436 684 418T641 400T598 417T580 460ZM1027 160Q1027 184 1044 202T1087 220Q1111 220 1129 204T1148 161Q1148 136 1131 118T1088 100T1045 117T1027 160Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(48325,0)"><g id="mjx-eqn-13"><use xlink:href="#E3063-MJMAIN-28"></use><use xlink:href="#E3063-MJMAIN-31" x="389" y="0"></use><use xlink:href="#E3063-MJMAIN-33" x="889" y="0"></use><use xlink:href="#E3063-MJMAIN-29" x="1389" y="0"></use></g></g><g transform="translate(20604,0)"><g transform="translate(-15,0)"><g transform="translate(0,5310)"><use xlink:href="#E3063-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-8371) scale(1,11)"><use xlink:href="#E3063-MJSZ4-23A2"></use></g><use xlink:href="#E3063-MJSZ4-23A3" x="0" y="-9476"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><g transform="translate(0,3160)"><g transform="translate(0,2150)"><use xlink:href="#E3063-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-2051) scale(1,0.5016611295681063)"><use xlink:href="#E3063-MJSZ4-23A2"></use></g><use xlink:href="#E3063-MJSZ4-23A3" x="0" y="-3156"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><use xlink:href="#E3063-MJMAIN-31" x="0" y="1350"></use><use xlink:href="#E3063-MJMAIN-31" x="0" y="-50"></use><use xlink:href="#E3063-MJMAIN-31" x="0" y="-1450"></use></g></g><g transform="translate(1486,2150)"><use xlink:href="#E3063-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-2051) scale(1,0.5016611295681063)"><use xlink:href="#E3063-MJSZ4-23A5"></use></g><use xlink:href="#E3063-MJSZ4-23A6" x="0" y="-3156"></use></g></g><use xlink:href="#E3063-MJMAIN-22EE" x="937" y="-410"></use><use xlink:href="#E3063-MJMAIN-30" x="826" y="-3160"></use></g><g transform="translate(3139,0)"><use xlink:href="#E3063-MJMAIN-2026" x="55" y="3160"></use><use xlink:href="#E3063-MJMAIN-22F1" x="0" y="-410"></use><use xlink:href="#E3063-MJMAIN-2026" x="55" y="-3160"></use></g><g transform="translate(5421,0)"><use xlink:href="#E3063-MJMAIN-30" x="826" y="3160"></use><use xlink:href="#E3063-MJMAIN-22EE" x="937" y="-410"></use><g transform="translate(0,-3160)"><g transform="translate(0,2150)"><use xlink:href="#E3063-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-2051) scale(1,0.5016611295681063)"><use xlink:href="#E3063-MJSZ4-23A2"></use></g><use xlink:href="#E3063-MJSZ4-23A3" x="0" y="-3156"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><use xlink:href="#E3063-MJMAIN-31" x="0" y="1350"></use><use xlink:href="#E3063-MJMAIN-31" x="0" y="-50"></use><use xlink:href="#E3063-MJMAIN-31" x="0" y="-1450"></use></g></g><g transform="translate(1486,2150)"><use xlink:href="#E3063-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-2051) scale(1,0.5016611295681063)"><use xlink:href="#E3063-MJSZ4-23A5"></use></g><use xlink:href="#E3063-MJSZ4-23A6" x="0" y="-3156"></use></g></g></g></g><g transform="translate(8575,5310)"><use xlink:href="#E3063-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-8371) scale(1,11)"><use xlink:href="#E3063-MJSZ4-23A5"></use></g><use xlink:href="#E3063-MJSZ4-23A6" x="0" y="-9476"></use></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-2325">\begin{bmatrix}
\begin{bmatrix}
1 \\
1\\
1 \\
\end{bmatrix} & \dots & 0 \\
\vdots & \ddots &\vdots \\
0 & \dots &
\begin{bmatrix}
1\\
1\\
1\\
\end{bmatrix} \\
\end{bmatrix}</script>
</div></div><h4><a name="getting-boldci" class="md-header-anchor"></a><span>Getting </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.99ex" height="2.308ex" viewBox="0 -783.2 1287.4 993.6" role="img" focusable="false" style="vertical-align: -0.489ex;"><defs><path stroke-width="0" id="E3057-MJMAINB-43" d="M64 343Q64 502 174 599T468 697Q502 697 533 691T586 674T623 655T647 639T657 632L694 663Q703 670 711 677T723 687T730 692T735 695T740 696T746 697Q759 697 762 692T766 668V627V489V449Q766 428 762 424T742 419H732H720Q699 419 697 436Q690 498 657 545Q611 618 532 632Q522 634 496 634Q356 634 286 553Q232 488 232 343T286 133Q355 52 497 52Q597 52 650 112T704 237Q704 248 709 251T729 254H735Q750 254 755 253T763 248T766 234Q766 136 680 63T469 -11Q285 -11 175 86T64 343Z"></path><path stroke-width="0" id="E3057-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3057-MJMAINB-43" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3057-MJMATHI-49" x="1175" y="-213"></use></g></svg></span><script type="math/tex">\bold{C}_I</script></h4><ul><li><span>Dimension: 2n x (n + </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.692ex" height="2.671ex" viewBox="0 -835.3 1159 1149.8" role="img" focusable="false" style="vertical-align: -0.73ex;"><defs><path stroke-width="0" id="E3056-MJMAIN-7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z"></path><path stroke-width="0" id="E3056-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3056-MJMAIN-7C" x="0" y="0"></use><use xlink:href="#E3056-MJMATHI-3BC" x="278" y="0"></use><use xlink:href="#E3056-MJMAIN-7C" x="881" y="0"></use></g></svg></span><script type="math/tex">|\mu|</script><span>)</span></li></ul><p><span>We construct </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.99ex" height="2.308ex" viewBox="0 -783.2 1287.4 993.6" role="img" focusable="false" style="vertical-align: -0.489ex;"><defs><path stroke-width="0" id="E3057-MJMAINB-43" d="M64 343Q64 502 174 599T468 697Q502 697 533 691T586 674T623 655T647 639T657 632L694 663Q703 670 711 677T723 687T730 692T735 695T740 696T746 697Q759 697 762 692T766 668V627V489V449Q766 428 762 424T742 419H732H720Q699 419 697 436Q690 498 657 545Q611 618 532 632Q522 634 496 634Q356 634 286 553Q232 488 232 343T286 133Q355 52 497 52Q597 52 650 112T704 237Q704 248 709 251T729 254H735Q750 254 755 253T763 248T766 234Q766 136 680 63T469 -11Q285 -11 175 86T64 343Z"></path><path stroke-width="0" id="E3057-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3057-MJMAINB-43" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3057-MJMATHI-49" x="1175" y="-213"></use></g></svg></span><script type="math/tex">\bold{C}_I</script><span> such that </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="22.606ex" height="2.913ex" viewBox="0 -887.4 9733.3 1254" role="img" focusable="false" style="vertical-align: -0.851ex;"><defs><path stroke-width="0" id="E3058-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path><path stroke-width="0" id="E3058-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E3058-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3058-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3058-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3058-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E3058-MJMAIN-2264" d="M674 636Q682 636 688 630T694 615T687 601Q686 600 417 472L151 346L399 228Q687 92 691 87Q694 81 694 76Q694 58 676 56H670L382 192Q92 329 90 331Q83 336 83 348Q84 359 96 365Q104 369 382 500T665 634Q669 636 674 636ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E3058-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E3058-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3058-MJMATHI-3BC" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-67" x="852" y="-213"></use><g transform="translate(1042,0)"><use xlink:href="#E3058-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,352)"><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-6E" x="1223" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-69" x="824" y="-429"></use></g><use xlink:href="#E3058-MJMAIN-2264" x="3292" y="0"></use><g transform="translate(4348,0)"><use xlink:href="#E3058-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-69" x="824" y="-213"></use></g><use xlink:href="#E3058-MJMAIN-2264" x="5552" y="0"></use><g transform="translate(6608,0)"><use xlink:href="#E3058-MJMATHI-3BC" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-67" x="852" y="-213"></use></g><g transform="translate(7650,0)"><use xlink:href="#E3058-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,352)"><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-78" x="1406" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E3058-MJMATHI-69" x="824" y="-429"></use></g></g></svg></span><script type="math/tex">\mu_g \lambda^{min}_i \leq \lambda_i \leq \mu_g \lambda^{max}_i</script><span> can be transformed into </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="14.148ex" height="2.913ex" viewBox="0 -939.5 6091.3 1254" role="img" focusable="false" style="vertical-align: -0.73ex;"><defs><path stroke-width="0" id="E3059-MJMAINB-43" d="M64 343Q64 502 174 599T468 697Q502 697 533 691T586 674T623 655T647 639T657 632L694 663Q703 670 711 677T723 687T730 692T735 695T740 696T746 697Q759 697 762 692T766 668V627V489V449Q766 428 762 424T742 419H732H720Q699 419 697 436Q690 498 657 545Q611 618 532 632Q522 634 496 634Q356 634 286 553Q232 488 232 343T286 133Q355 52 497 52Q597 52 650 112T704 237Q704 248 709 251T729 254H735Q750 254 755 253T763 248T766 234Q766 136 680 63T469 -11Q285 -11 175 86T64 343Z"></path><path stroke-width="0" id="E3059-MJMATHI-49" d="M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z"></path><path stroke-width="0" id="E3059-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E3059-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3059-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path><path stroke-width="0" id="E3059-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E3059-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E3059-MJMAIN-2264" d="M674 636Q682 636 688 630T694 615T687 601Q686 600 417 472L151 346L399 228Q687 92 691 87Q694 81 694 76Q694 58 676 56H670L382 192Q92 329 90 331Q83 336 83 348Q84 359 96 365Q104 369 382 500T665 634Q669 636 674 636ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E3059-MJMAINB-30" d="M266 654H280H282Q500 654 524 418Q529 370 529 320Q529 125 456 52Q397 -10 287 -10Q110 -10 63 154Q45 212 45 316Q45 504 113 585Q140 618 185 636T266 654ZM374 548Q347 604 286 604Q247 604 218 575Q197 552 193 511T188 311Q188 159 196 116Q202 87 225 64T287 41Q339 41 367 87Q379 107 382 152T386 329Q386 518 374 548Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3059-MJMAINB-43" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3059-MJMATHI-49" x="1175" y="-213"></use><use xlink:href="#E3059-MJMAIN-5B" x="1287" y="0"></use><use xlink:href="#E3059-MJMATHI-3BB" x="1565" y="0"></use><use xlink:href="#E3059-MJMATHI-3BC" x="2703" y="0"></use><g transform="translate(3306,0)"><use xlink:href="#E3059-MJMAIN-5D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3059-MJMATHI-54" x="393" y="513"></use></g><use xlink:href="#E3059-MJMAIN-2264" x="4460" y="0"></use><use xlink:href="#E3059-MJMAINB-30" x="5516" y="0"></use></g></svg></span><script type="math/tex">\bold{C}_I [\lambda \;\; \mu]^T \le \bold{0}</script><span>. Below is an example of an inequality constraint for a mesh with 4 vertices and 2 groups. </span></p><div mdtype="math_block" cid="n391" id="mathjax-n391" class="mathjax-block md-end-block md-math-block md-rawblock" spellcheck="false" contenteditable="false">
<div class="md-rawblock-container md-math-container" contenteditable="false" tabindex="-1">
<div class="MathJax_SVG_Display"><span class="MathJax_SVG" id="MathJax-Element-1959-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="116.371ex" height="27.106ex" viewBox="0 -6095.7 50104 11670.6" role="img" focusable="false" style="vertical-align: -12.778ex; margin-bottom: -0.17ex; max-width: 100%;"><defs><path stroke-width="0" id="E2940-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2940-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E2940-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E2940-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2940-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E2940-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E2940-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E2940-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E2940-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2940-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2940-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2940-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E2940-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E2940-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E2940-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E2940-MJSZ4-23A1" d="M319 -645V1154H666V1070H403V-645H319Z"></path><path stroke-width="0" id="E2940-MJSZ4-23A3" d="M319 -644V1155H403V-560H666V-644H319Z"></path><path stroke-width="0" id="E2940-MJSZ4-23A2" d="M319 0V602H403V0H319Z"></path><path stroke-width="0" id="E2940-MJSZ4-23A4" d="M0 1070V1154H347V-645H263V1070H0Z"></path><path stroke-width="0" id="E2940-MJSZ4-23A6" d="M263 -560V1155H347V-644H0V-560H263Z"></path><path stroke-width="0" id="E2940-MJSZ4-23A5" d="M263 0V602H347V0H263Z"></path><path stroke-width="0" id="E2940-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E2940-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path><path stroke-width="0" id="E2940-MJMAIN-2264" d="M674 636Q682 636 688 630T694 615T687 601Q686 600 417 472L151 346L399 228Q687 92 691 87Q694 81 694 76Q694 58 676 56H670L382 192Q92 329 90 331Q83 336 83 348Q84 359 96 365Q104 369 382 500T665 634Q669 636 674 636ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E2940-MJMAINB-30" d="M266 654H280H282Q500 654 524 418Q529 370 529 320Q529 125 456 52Q397 -10 287 -10Q110 -10 63 154Q45 212 45 316Q45 504 113 585Q140 618 185 636T266 654ZM374 548Q347 604 286 604Q247 604 218 575Q197 552 193 511T188 311Q188 159 196 116Q202 87 225 64T287 41Q339 41 367 87Q379 107 382 152T386 329Q386 518 374 548Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(48325,0)"><g id="mjx-eqn-12_1"><use xlink:href="#E2940-MJMAIN-28"></use><use xlink:href="#E2940-MJMAIN-31" x="389" y="0"></use><use xlink:href="#E2940-MJMAIN-32" x="889" y="0"></use><use xlink:href="#E2940-MJMAIN-29" x="1389" y="0"></use></g></g><g transform="translate(13186,0)"><g transform="translate(-15,0)"><g transform="translate(0,6001)"><use xlink:href="#E2940-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-9754.086578651013) scale(1,13.297486011048194)"><use xlink:href="#E2940-MJSZ4-23A2"></use></g><use xlink:href="#E2940-MJSZ4-23A3" x="0" y="-10860"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><g transform="translate(0,5201)"><use xlink:href="#E2940-MJMAIN-2212" x="0" y="0"></use><use xlink:href="#E2940-MJMAIN-31" x="778" y="0"></use></g><use xlink:href="#E2940-MJMAIN-30" x="389" y="3713"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="2225"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="737"></use><use xlink:href="#E2940-MJMAIN-31" x="389" y="-751"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="-2238"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="-3726"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="-5214"></use></g><g transform="translate(2263,0)"><use xlink:href="#E2940-MJMAIN-30" x="389" y="5201"></use><g transform="translate(0,3713)"><use xlink:href="#E2940-MJMAIN-2212" x="0" y="0"></use><use xlink:href="#E2940-MJMAIN-31" x="778" y="0"></use></g><use xlink:href="#E2940-MJMAIN-30" x="389" y="2225"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="737"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="-751"></use><use xlink:href="#E2940-MJMAIN-31" x="389" y="-2238"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="-3726"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="-5214"></use></g><g transform="translate(4541,0)"><use xlink:href="#E2940-MJMAIN-30" x="389" y="5201"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="3713"></use><g transform="translate(0,2225)"><use xlink:href="#E2940-MJMAIN-2212" x="0" y="0"></use><use xlink:href="#E2940-MJMAIN-31" x="778" y="0"></use></g><use xlink:href="#E2940-MJMAIN-30" x="389" y="737"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="-751"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="-2238"></use><use xlink:href="#E2940-MJMAIN-31" x="389" y="-3726"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="-5214"></use></g><g transform="translate(6819,0)"><use xlink:href="#E2940-MJMAIN-30" x="389" y="5201"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="3713"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="2225"></use><g transform="translate(0,737)"><use xlink:href="#E2940-MJMAIN-2212" x="0" y="0"></use><use xlink:href="#E2940-MJMAIN-31" x="778" y="0"></use></g><use xlink:href="#E2940-MJMAIN-30" x="389" y="-751"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="-2238"></use><use xlink:href="#E2940-MJMAIN-30" x="389" y="-3726"></use><use xlink:href="#E2940-MJMAIN-31" x="389" y="-5214"></use></g><g transform="translate(9097,0)"><g transform="translate(444,5201)"><use xlink:href="#E2940-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-6E" x="1223" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-2C" x="1823" y="0"></use><g transform="translate(1485,0)"><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-30"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-30" x="500" y="0"></use></g></g></g><g transform="translate(444,3713)"><use xlink:href="#E2940-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-6E" x="1223" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-2C" x="1823" y="0"></use><g transform="translate(1485,0)"><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-30"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-31" x="500" y="0"></use></g></g></g><use xlink:href="#E2940-MJMAIN-30" x="1632" y="2225"></use><use xlink:href="#E2940-MJMAIN-30" x="1632" y="737"></use><g transform="translate(0,-751)"><use xlink:href="#E2940-MJMAIN-2212" x="0" y="0"></use><g transform="translate(778,0)"><use xlink:href="#E2940-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-78" x="1406" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-2C" x="1979" y="0"></use><g transform="translate(1595,0)"><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-30"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-30" x="500" y="0"></use></g></g></g></g><g transform="translate(0,-2238)"><use xlink:href="#E2940-MJMAIN-2212" x="0" y="0"></use><g transform="translate(778,0)"><use xlink:href="#E2940-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-78" x="1406" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-2C" x="1979" y="0"></use><g transform="translate(1595,0)"><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-30"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-31" x="500" y="0"></use></g></g></g></g><use xlink:href="#E2940-MJMAIN-30" x="1632" y="-3726"></use><use xlink:href="#E2940-MJMAIN-30" x="1632" y="-5214"></use></g><g transform="translate(13861,0)"><use xlink:href="#E2940-MJMAIN-30" x="1632" y="5201"></use><use xlink:href="#E2940-MJMAIN-30" x="1632" y="3713"></use><g transform="translate(444,2225)"><use xlink:href="#E2940-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-6E" x="1223" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-2C" x="1823" y="0"></use><g transform="translate(1485,0)"><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-31"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-30" x="500" y="0"></use></g></g></g><g transform="translate(444,737)"><use xlink:href="#E2940-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-6E" x="1223" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-2C" x="1823" y="0"></use><g transform="translate(1485,0)"><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-31"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-31" x="500" y="0"></use></g></g></g><use xlink:href="#E2940-MJMAIN-30" x="1632" y="-751"></use><use xlink:href="#E2940-MJMAIN-30" x="1632" y="-2238"></use><g transform="translate(0,-3726)"><use xlink:href="#E2940-MJMAIN-2212" x="0" y="0"></use><g transform="translate(778,0)"><use xlink:href="#E2940-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-78" x="1406" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-2C" x="1979" y="0"></use><g transform="translate(1595,0)"><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-31"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-30" x="500" y="0"></use></g></g></g></g><g transform="translate(0,-5214)"><use xlink:href="#E2940-MJMAIN-2212" x="0" y="0"></use><g transform="translate(778,0)"><use xlink:href="#E2940-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMATHI-78" x="1406" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-2C" x="1979" y="0"></use><g transform="translate(1595,0)"><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-31"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-31" x="500" y="0"></use></g></g></g></g></g></g><g transform="translate(18626,6001)"><use xlink:href="#E2940-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-9754.086578651013) scale(1,13.297486011048194)"><use xlink:href="#E2940-MJSZ4-23A5"></use></g><use xlink:href="#E2940-MJSZ4-23A6" x="0" y="-10860"></use></g><g transform="translate(19460,0)"><g transform="translate(0,4266)"><use xlink:href="#E2940-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-6283) scale(1,7.53156146179402)"><use xlink:href="#E2940-MJSZ4-23A2"></use></g><use xlink:href="#E2940-MJSZ4-23A3" x="0" y="-7388"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><g transform="translate(10,3466)"><use xlink:href="#E2940-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-30" x="824" y="-213"></use></g><g transform="translate(10,2066)"><use xlink:href="#E2940-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-31" x="824" y="-213"></use></g><g transform="translate(10,666)"><use xlink:href="#E2940-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-32" x="824" y="-213"></use></g><g transform="translate(10,-734)"><use xlink:href="#E2940-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-33" x="824" y="-213"></use></g><g transform="translate(0,-2134)"><use xlink:href="#E2940-MJMATHI-3BC" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-30" x="852" y="-213"></use></g><g transform="translate(0,-3550)"><use xlink:href="#E2940-MJMATHI-3BC" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2940-MJMAIN-31" x="852" y="-213"></use></g></g></g><g transform="translate(2043,4266)"><use xlink:href="#E2940-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-6283) scale(1,7.53156146179402)"><use xlink:href="#E2940-MJSZ4-23A5"></use></g><use xlink:href="#E2940-MJSZ4-23A6" x="0" y="-7388"></use></g></g><use xlink:href="#E2940-MJMAIN-2264" x="22448" y="0"></use><use xlink:href="#E2940-MJMAINB-30" x="23504" y="0"></use></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-1959">\begin{bmatrix}
-1 & 0 & 0 & 0 & \lambda_{min,00} & 0 \\
0 & -1 & 0 & 0 & \lambda_{min,01} & 0 \\
0 & 0 & -1 & 0 & 0 & \lambda_{min,10} \\
0 & 0 & 0 & -1 & 0 & \lambda_{min,11} \\
1 & 0 & 0 & 0 & -\lambda_{max,00} & 0 \\
0 & 1 & 0 & 0 & -\lambda_{max,01} & 0 \\
0 & 0 & 1 & 0 & 0 & -\lambda_{max,10} \\
0 & 0 & 0 & 1 & 0 & -\lambda_{max,11} \\
\end{bmatrix}
\begin{bmatrix}
\lambda_0 \\
\lambda_1 \\
\lambda_2 \\
\lambda_3 \\
\mu_0 \\
\mu_1 \\
\end{bmatrix}
\le
\bold{0}</script>
</div></div><p> </p><h4><a name="getting-bounds-on-boldlambda" class="md-header-anchor"></a><span>Getting Bounds on </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.354ex" height="1.999ex" viewBox="0 -768.4 583 860.6" role="img" focusable="false" style="vertical-align: -0.214ex;"><defs><path stroke-width="0" id="E3060-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3060-MJMATHI-3BB" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{\lambda}</script></h4><p><img src="report/bounding_box.png" alt="bounding box" style="zoom:20%;" /></p><p><span>Bounds for </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.153ex" height="2.429ex" viewBox="0 -783.2 927 1045.7" role="img" focusable="false" style="vertical-align: -0.609ex;"><defs><path stroke-width="0" id="E3061-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E3061-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3061-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E3061-MJMATHI-69" x="824" y="-213"></use></g></svg></span><script type="math/tex">\lambda_i</script><span> varies for each vertex and each mesh. We first compute a bounding box </span><sup class='md-footnote'><a href='#dfref-footnote-3' name='ref-footnote-3'>3</a></sup><span> for the mesh to help with customizing </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.354ex" height="2.066ex" viewBox="0 -783.2 583 889.4" role="img" focusable="false" style="vertical-align: -0.247ex;"><defs><path stroke-width="0" id="E3062-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3062-MJMATHI-3BB" x="0" y="0"></use></g></svg></span><script type="math/tex">\lambda</script><span> bounds. </span></p><p><img src="report/viewpoint.png" alt="bounding box" style="zoom:20%;" /></p><p><span>The above figure shows how </span><code>main.cpp</code><span> deforms a mesh from a left viewpoint. We assume the mesh faces the positive z-axis and the bounding box is roughly square. </span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n224" cid="n224" mdtype="math_block">
<div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-417-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="44.224ex" height="18.517ex" viewBox="0 -4220.7 19040.7 7972.7" role="img" focusable="false" style="vertical-align: -8.714ex; max-width: 100%;"><defs><path stroke-width="0" id="E2941-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E2941-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2941-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E2941-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E2941-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E2941-MJMAIN-7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z"></path><path stroke-width="0" id="E2941-MJMATHI-4F" d="M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z"></path><path stroke-width="0" id="E2941-MJMATHI-47" d="M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z"></path><path stroke-width="0" id="E2941-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2941-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2941-MJMATHI-45" d="M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z"></path><path stroke-width="0" id="E2941-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E2941-MJMAINB-76" d="M401 444Q413 441 495 441Q568 441 574 444H580V382H510L409 156Q348 18 339 6Q331 -4 320 -4Q318 -4 313 -4T303 -3H288Q273 -3 264 12T221 102Q206 135 197 156L96 382H26V444H34Q49 441 145 441Q252 441 270 444H279V382H231L284 264Q335 149 338 149Q338 150 389 264T442 381Q442 382 418 382H394V444H401Z"></path><path stroke-width="0" id="E2941-MJMAINB-5E" d="M207 632L287 694Q289 693 368 632T448 570T431 545T413 520Q410 520 350 559L287 597L224 559Q164 520 161 520Q160 520 143 544T126 570T207 632Z"></path><path stroke-width="0" id="E2941-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E2941-MJMAIN-22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path stroke-width="0" id="E2941-MJMAINB-6E" d="M40 442Q217 450 218 450H224V407L225 365Q233 378 245 391T289 422T362 448Q374 450 398 450Q428 450 448 447T491 434T529 402T551 346Q553 335 554 198V62H623V0H614Q596 3 489 3Q374 3 365 0H356V62H425V194V275Q425 348 416 373T371 399Q326 399 288 370T238 290Q236 281 235 171V62H304V0H295Q277 3 171 3Q64 3 46 0H37V62H106V210V303Q106 353 104 363T91 376Q77 380 50 380H37V442H40Z"></path><path stroke-width="0" id="E2941-MJMAIN-2264" d="M674 636Q682 636 688 630T694 615T687 601Q686 600 417 472L151 346L399 228Q687 92 691 87Q694 81 694 76Q694 58 676 56H670L382 192Q92 329 90 331Q83 336 83 348Q84 359 96 365Q104 369 382 500T665 634Q669 636 674 636ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E2941-MJMAIN-2192" d="M56 237T56 250T70 270H835Q719 357 692 493Q692 494 692 496T691 499Q691 511 708 511H711Q720 511 723 510T729 506T732 497T735 481T743 456Q765 389 816 336T935 261Q944 258 944 250Q944 244 939 241T915 231T877 212Q836 186 806 152T761 85T740 35T732 4Q730 -6 727 -8T711 -11Q691 -11 691 0Q691 7 696 25Q728 151 835 230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E2941-MJMAIN-2F" d="M423 750Q432 750 438 744T444 730Q444 725 271 248T92 -240Q85 -250 75 -250Q68 -250 62 -245T56 -231Q56 -221 230 257T407 740Q411 750 423 750Z"></path><path stroke-width="0" id="E2941-MJMAIN-2265" d="M83 616Q83 624 89 630T99 636Q107 636 253 568T543 431T687 361Q694 356 694 346T687 331Q685 329 395 192L107 56H101Q83 58 83 76Q83 77 83 79Q82 86 98 95Q117 105 248 167Q326 204 378 228L626 346L360 472Q291 505 200 548Q112 589 98 597T83 616ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E2941-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E2941-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E2941-MJMATHI-77" d="M580 385Q580 406 599 424T641 443Q659 443 674 425T690 368Q690 339 671 253Q656 197 644 161T609 80T554 12T482 -11Q438 -11 404 5T355 48Q354 47 352 44Q311 -11 252 -11Q226 -11 202 -5T155 14T118 53T104 116Q104 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Q21 293 29 315T52 366T96 418T161 441Q204 441 227 416T250 358Q250 340 217 250T184 111Q184 65 205 46T258 26Q301 26 334 87L339 96V119Q339 122 339 128T340 136T341 143T342 152T345 165T348 182T354 206T362 238T373 281Q402 395 406 404Q419 431 449 431Q468 431 475 421T483 402Q483 389 454 274T422 142Q420 131 420 107V100Q420 85 423 71T442 42T487 26Q558 26 600 148Q609 171 620 213T632 273Q632 306 619 325T593 357T580 385Z"></path><path stroke-width="0" id="E2941-MJMATHI-65" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path stroke-width="0" id="E2941-MJMATHI-72" d="M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2941-MJMATHI-62" d="M73 647Q73 657 77 670T89 683Q90 683 161 688T234 694Q246 694 246 685T212 542Q204 508 195 472T180 418L176 399Q176 396 182 402Q231 442 283 442Q345 442 383 396T422 280Q422 169 343 79T173 -11Q123 -11 82 27T40 150V159Q40 180 48 217T97 414Q147 611 147 623T109 637Q104 637 101 637H96Q86 637 83 637T76 640T73 647ZM336 325V331Q336 405 275 405Q258 405 240 397T207 376T181 352T163 330L157 322L136 236Q114 150 114 114Q114 66 138 42Q154 26 178 26Q211 26 245 58Q270 81 285 114T318 219Q336 291 336 325Z"></path><path stroke-width="0" id="E2941-MJMATHI-75" d="M21 287Q21 295 30 318T55 370T99 420T158 442Q204 442 227 417T250 358Q250 340 216 246T182 105Q182 62 196 45T238 27T291 44T328 78L339 95Q341 99 377 247Q407 367 413 387T427 416Q444 431 463 431Q480 431 488 421T496 402L420 84Q419 79 419 68Q419 43 426 35T447 26Q469 29 482 57T512 145Q514 153 532 153Q551 153 551 144Q550 139 549 130T540 98T523 55T498 17T462 -8Q454 -10 438 -10Q372 -10 347 46Q345 45 336 36T318 21T296 6T267 -6T233 -11Q189 -11 155 7Q103 38 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E2941-MJMATHI-64" d="M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z"></path><path stroke-width="0" id="E2941-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,3349)"><use xlink:href="#E2941-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-78" x="1406" y="0"></use></g><use xlink:href="#E2941-MJMAIN-3D" x="2360" y="0"></use><use xlink:href="#E2941-MJMAIN-7C" x="3415" y="0"></use><use xlink:href="#E2941-MJMATHI-4F" x="3693" y="0"></use><use xlink:href="#E2941-MJMATHI-47" x="4456" y="0"></use><use xlink:href="#E2941-MJMAIN-7C" x="5242" y="0"></use></g><g transform="translate(0,2000)"><use xlink:href="#E2941-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-6E" x="1223" y="0"></use></g><use xlink:href="#E2941-MJMAIN-3D" x="2249" y="0"></use><use xlink:href="#E2941-MJMAIN-7C" x="3305" y="0"></use><use xlink:href="#E2941-MJMATHI-4F" x="3583" y="0"></use><use xlink:href="#E2941-MJMATHI-45" x="4346" y="0"></use><use xlink:href="#E2941-MJMAIN-7C" x="5110" y="0"></use></g><g transform="translate(0,651)"><use xlink:href="#E2941-MJMAIN-28" x="0" y="0"></use><g transform="translate(389,0)"><use xlink:href="#E2941-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="824" y="-213"></use></g><g transform="translate(1315,0)"><use xlink:href="#E2941-MJMAINB-76" x="0" y="0"></use><use xlink:href="#E2941-MJMAINB-5E" x="16" y="2"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="858" y="-213"></use></g><use xlink:href="#E2941-MJMAIN-29" x="2266" y="0"></use><use xlink:href="#E2941-MJMAIN-22C5" x="3155" y="0"></use><g transform="translate(3933,0)"><use xlink:href="#E2941-MJMAINB-6E" x="0" y="0"></use><use xlink:href="#E2941-MJMAINB-5E" x="32" y="8"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="903" y="-213"></use></g><use xlink:href="#E2941-MJMAIN-2264" x="5194" y="0"></use><g transform="translate(6250,0)"><use xlink:href="#E2941-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-78" x="1406" y="0"></use></g></g><use xlink:href="#E2941-MJMAIN-2192" x="8610" y="0"></use><g transform="translate(9888,0)"><use xlink:href="#E2941-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="824" y="-213"></use></g><use xlink:href="#E2941-MJMAIN-2264" x="11093" y="0"></use><g transform="translate(12148,0)"><use xlink:href="#E2941-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-78" x="1406" y="0"></use></g></g><use xlink:href="#E2941-MJMAIN-2F" x="14231" y="0"></use><use xlink:href="#E2941-MJMAIN-28" x="14731" y="0"></use><g transform="translate(15120,0)"><use xlink:href="#E2941-MJMAINB-76" x="0" y="0"></use><use xlink:href="#E2941-MJMAINB-5E" x="16" y="2"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="858" y="-213"></use></g><use xlink:href="#E2941-MJMAIN-22C5" x="16571" y="0"></use><g transform="translate(17349,0)"><use xlink:href="#E2941-MJMAINB-6E" x="0" y="0"></use><use xlink:href="#E2941-MJMAINB-5E" x="32" y="8"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="903" y="-213"></use></g><use xlink:href="#E2941-MJMAIN-29" x="18332" y="0"></use></g><g transform="translate(0,-699)"><use xlink:href="#E2941-MJMAIN-28" x="0" y="0"></use><g transform="translate(389,0)"><use xlink:href="#E2941-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="824" y="-213"></use></g><g transform="translate(1315,0)"><use xlink:href="#E2941-MJMAINB-76" x="0" y="0"></use><use xlink:href="#E2941-MJMAINB-5E" x="16" y="2"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="858" y="-213"></use></g><use xlink:href="#E2941-MJMAIN-29" x="2266" y="0"></use><use xlink:href="#E2941-MJMAIN-22C5" x="3155" y="0"></use><g transform="translate(3933,0)"><use xlink:href="#E2941-MJMAINB-6E" x="0" y="0"></use><use xlink:href="#E2941-MJMAINB-5E" x="32" y="8"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="903" y="-213"></use></g><use xlink:href="#E2941-MJMAIN-2265" x="5194" y="0"></use><g transform="translate(6250,0)"><use xlink:href="#E2941-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-6E" x="1223" y="0"></use></g></g><use xlink:href="#E2941-MJMAIN-2192" x="8500" y="0"></use><g transform="translate(9778,0)"><use xlink:href="#E2941-MJMATHI-3BB" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="824" y="-213"></use></g><use xlink:href="#E2941-MJMAIN-2265" x="10982" y="0"></use><g transform="translate(12038,0)"><use xlink:href="#E2941-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-6E" x="1223" y="0"></use></g></g><use xlink:href="#E2941-MJMAIN-2F" x="14010" y="0"></use><use xlink:href="#E2941-MJMAIN-28" x="14510" y="0"></use><g transform="translate(14899,0)"><use xlink:href="#E2941-MJMAINB-76" x="0" y="0"></use><use xlink:href="#E2941-MJMAINB-5E" x="16" y="2"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="858" y="-213"></use></g><use xlink:href="#E2941-MJMAIN-22C5" x="16350" y="0"></use><g transform="translate(17128,0)"><use xlink:href="#E2941-MJMAINB-6E" x="0" y="0"></use><use xlink:href="#E2941-MJMAINB-5E" x="32" y="8"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="903" y="-213"></use></g><use xlink:href="#E2941-MJMAIN-29" x="18111" y="0"></use></g><g transform="translate(0,-2049)"><use xlink:href="#E2941-MJMATHI-6C" x="0" y="0"></use><use xlink:href="#E2941-MJMATHI-6F" x="298" y="0"></use><use xlink:href="#E2941-MJMATHI-77" x="783" y="0"></use><use xlink:href="#E2941-MJMATHI-65" x="1499" y="0"></use><use xlink:href="#E2941-MJMATHI-72" x="1965" y="0"></use><use xlink:href="#E2941-MJMATHI-62" x="2416" y="0"></use><use xlink:href="#E2941-MJMATHI-6F" x="2845" y="0"></use><use xlink:href="#E2941-MJMATHI-75" x="3330" y="0"></use><use xlink:href="#E2941-MJMATHI-6E" x="3902" y="0"></use><use xlink:href="#E2941-MJMATHI-64" x="4502" y="0"></use><use xlink:href="#E2941-MJMAIN-3D" x="5302" y="0"></use><g transform="translate(6358,0)"><use xlink:href="#E2941-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-61" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-78" x="1406" y="0"></use></g></g><use xlink:href="#E2941-MJMAIN-2F" x="8440" y="0"></use><use xlink:href="#E2941-MJMAIN-28" x="8940" y="0"></use><g transform="translate(9329,0)"><use xlink:href="#E2941-MJMAINB-76" x="0" y="0"></use><use xlink:href="#E2941-MJMAINB-5E" x="16" y="2"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="858" y="-213"></use></g><use xlink:href="#E2941-MJMAIN-22C5" x="10780" y="0"></use><g transform="translate(11558,0)"><use xlink:href="#E2941-MJMAINB-6E" x="0" y="0"></use><use xlink:href="#E2941-MJMAINB-5E" x="32" y="8"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="903" y="-213"></use></g><use xlink:href="#E2941-MJMAIN-29" x="12541" y="0"></use></g><g transform="translate(0,-3399)"><use xlink:href="#E2941-MJMATHI-75" x="0" y="0"></use><use xlink:href="#E2941-MJMATHI-70" x="572" y="0"></use><use xlink:href="#E2941-MJMATHI-70" x="1075" y="0"></use><use xlink:href="#E2941-MJMATHI-65" x="1578" y="0"></use><use xlink:href="#E2941-MJMATHI-72" x="2044" y="0"></use><use xlink:href="#E2941-MJMATHI-62" x="2495" y="0"></use><use xlink:href="#E2941-MJMATHI-6F" x="2924" y="0"></use><use xlink:href="#E2941-MJMATHI-75" x="3409" y="0"></use><use xlink:href="#E2941-MJMATHI-6E" x="3981" y="0"></use><use xlink:href="#E2941-MJMATHI-64" x="4581" y="0"></use><use xlink:href="#E2941-MJMAIN-3D" x="5381" y="0"></use><g transform="translate(6437,0)"><use xlink:href="#E2941-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(583,-150)"><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-6E" x="1223" y="0"></use></g></g><use xlink:href="#E2941-MJMAIN-2F" x="8409" y="0"></use><use xlink:href="#E2941-MJMAIN-28" x="8909" y="0"></use><g transform="translate(9298,0)"><use xlink:href="#E2941-MJMAINB-76" x="0" y="0"></use><use xlink:href="#E2941-MJMAINB-5E" x="16" y="2"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="858" y="-213"></use></g><use xlink:href="#E2941-MJMAIN-22C5" x="10749" y="0"></use><g transform="translate(11527,0)"><use xlink:href="#E2941-MJMAINB-6E" x="0" y="0"></use><use xlink:href="#E2941-MJMAINB-5E" x="32" y="8"></use><use transform="scale(0.707)" xlink:href="#E2941-MJMATHI-69" x="903" y="-213"></use></g><use xlink:href="#E2941-MJMAIN-29" x="12510" y="0"></use></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-417">\begin{align*}
& \lambda_{max} = |OG|\\
& \lambda_{min} = |OE|\\
& (\lambda_i \bold{\hat{v}}_i) \; \cdot \; \bold{\hat{n}}_i \le \lambda_{max}
\rightarrow
\lambda_i \le \lambda_{max} / (\bold{\hat{v}}_i \; \cdot \; \bold{\hat{n}}_i)\\
& (\lambda_i \bold{\hat{v}}_i) \; \cdot \; \bold{\hat{n}}_i \ge \lambda_{min}
\rightarrow
\lambda_i \ge \lambda_{min} / (\bold{\hat{v}}_i \; \cdot \; \bold{\hat{n}}_i)\\
& lowerbound = \lambda_{max} / (\bold{\hat{v}}_i \; \cdot \; \bold{\hat{n}}_i) \\
& upperbound = \lambda_{min} / (\bold{\hat{v}}_i \; \cdot \; \bold{\hat{n}}_i)
\end{align*}</script></div></div><h2><a name="future-directions--challenges" class="md-header-anchor"></a><span>Future Directions & Challenges</span></h2><p><span>Although </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.401ex" height="1.945ex" viewBox="0 -522.8 603 837.3" role="img" focusable="false" style="vertical-align: -0.73ex;"><defs><path stroke-width="0" id="E3034-MJMATHI-3BC" d="M58 -216Q44 -216 34 -208T23 -186Q23 -176 96 116T173 414Q186 442 219 442Q231 441 239 435T249 423T251 413Q251 401 220 279T187 142Q185 131 185 107V99Q185 26 252 26Q261 26 270 27T287 31T302 38T315 45T327 55T338 65T348 77T356 88T365 100L372 110L408 253Q444 395 448 404Q461 431 491 431Q504 431 512 424T523 412T525 402L449 84Q448 79 448 68Q448 43 455 35T476 26Q485 27 496 35Q517 55 537 131Q543 151 547 152Q549 153 557 153H561Q580 153 580 144Q580 138 575 117T555 63T523 13Q510 0 491 -8Q483 -10 467 -10Q446 -10 429 -4T402 11T385 29T376 44T374 51L368 45Q362 39 350 30T324 12T288 -4T246 -11Q199 -11 153 12L129 -85Q108 -167 104 -180T92 -202Q76 -216 58 -216Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E3034-MJMATHI-3BC" x="0" y="0"></use></g></svg></span><script type="math/tex">\bold{\mu}</script><span> frees the user from specifying individual depth constraints for each disconnected piece, I am still having trouble producing disconnected appearance mimicking surfaces. If the input mesh is all connected (like the bunny), I am not sure how to break up the faces after breaking the vertices into mulitple groups. If the input mesh has disconnected pieces, I am not sure how to determine which vertices belong to the same group, other than manually inspecting the mesh file. </span></p><h2><a name="references" class="md-header-anchor"></a><span>References</span></h2><div class='footnotes-area' ><hr/>
<div class='footnote-line'><span class='md-fn-count'>1</span> <span>Christian Schuller, Daniele Panozzo, Olga Sorkine-Hornung, </span><a href='https://cims.nyu.edu/gcl/papers/mimicking-2014.pdf'><em><span>Appearance-Mimicking Surfaces</span></em></a><span>, 2014</span> <a name='dfref-footnote-1' href='#ref-footnote-1' title='back to document' class='reversefootnote' >↩</a></div>
<div class='footnote-line'><span class='md-fn-count'>2</span> <span>Mark Meyer, Mathieu Desbrun, Peter Schröder and Alan H. Barr, </span><a href='https://www.google.com/search?q=Discrete+Differential-Geometry+Operators+for+Triangulated+2-Manifolds'><span>Discrete Differential-Geometry Operators for Triangulated 2-Manifolds</span></a><span>, 2003.</span> <a name='dfref-footnote-2' href='#ref-footnote-2' title='back to document' class='reversefootnote' >↩</a></div>
<div class='footnote-line'><span class='md-fn-count'>3</span> <span>Libigl tutorial on bounding boxes: </span><a href='https://github.com/libigl/libigl/blob/master/tutorial/105_Overlays/main.cpp' target='_blank' class='url'>https://github.com/libigl/libigl/blob/master/tutorial/105_Overlays/main.cpp</a> <a name='dfref-footnote-3' href='#ref-footnote-3' title='back to document' class='reversefootnote' >↩</a></div></div></div>
</body>
</html>