-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
411 lines (346 loc) · 14.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
from landscapes import *
from metrics import *
from qnns.qnn import *
from expressibility import *
from entanglement import *
from circuit import CircuitDescriptor
import qiskit.qasm3
from subprocess import Popen, PIPE
import qiskit_aer.noise as qiskitNoiseModel
from flask import Flask
from flask_smorest import Api
from flask_smorest import Blueprint
import marshmallow as ma
app = Flask(__name__)
#Setup the interface
app.config.update(
API_TITLE = "QML Toolbox",
API_VERSION = "0.1",
OPENAPI_VERSION = "3.0.2",
OPENAPI_URL_PREFIX = "/api",
OPENAPI_SWAGGER_UI_PATH = "/swagger-ui",
OPENAPI_SWAGGER_UI_VERSION = "3.24.2",
OPENAPI_SWAGGER_UI_URL = "https://cdnjs.cloudflare.com/ajax/libs/swagger-ui/3.24.2/",
API_SPEC_OPTIONS = {
"info": {
"description": "Toolbox for QML developement",
},
}
)
api = Api(app)
#Define the starting page
@app.route("/")
def heartbeat():
return '<h1>QML-Toolbox</h1> <h3>View the API Docs <a href="/api/swagger-ui">here</a></h3>'
#Request schema for the metrics
class MetricsRequestSchema(ma.Schema):
num_qubits = ma.fields.Int()
num_layers = ma.fields.Int()
schmidt_rank = ma.fields.Int()
num_data_points = ma.fields.Int()
grid_size = ma.fields.Int()
#Response schema for the metrics
class MetricsResponseSchema(ma.Schema):
total_variation = ma.fields.Float()
fourier_density = ma.fields.Float()
inverse_standard_gradient_deviation = ma.fields.List(ma.fields.Float())
scalar_curvature = ma.fields.String()
#Blueprint for the metrics
blp_metrics = Blueprint(
"metrics",
__name__,
"calculates the metrics"
)
#Call for the function evaluating all metrics
#Setting up the route under which the function can be accessed
@blp_metrics.route("/metrics", methods=["POST"])
#Example arguments
@blp_metrics.arguments(
MetricsRequestSchema,
example=dict(
num_qubits=1,
num_layers=1,
schmidt_rank=2,
num_data_points=3,
grid_size=3,
),
)
@blp_metrics.response(200, MetricsResponseSchema)
def calculate_metrics(inputs: dict):
print(inputs)
check_metric_inputs(inputs)
landscape = get_loss_landscape(inputs["num_qubits"], inputs["num_layers"], inputs["schmidt_rank"], inputs["num_data_points"], inputs["grid_size"])
outputs ={"total_variation": calc_total_variation(landscape),
"fourier_density": calc_fourier_density(landscape),
"inverse_standard_gradient_deviation": calc_IGSD(landscape),
"scalar_curvature": str(calc_scalar_curvature(landscape))
}
return outputs
#Call for the function computing the total variation
#Setting up the route under which the function can be accessed
@blp_metrics.route("/total_variation", methods=["POST"])
#Example arguments
@blp_metrics.arguments(
MetricsRequestSchema,
example=dict(
num_qubits=1,
num_layers=1,
schmidt_rank=2,
num_data_points=3,
grid_size=3,
),
)
@blp_metrics.response(200, MetricsResponseSchema)
def calculate_total_variation(inputs: dict):
check_metric_inputs(inputs)
landscape = get_loss_landscape(inputs["num_qubits"], inputs["num_layers"], inputs["schmidt_rank"], inputs["num_data_points"], inputs["grid_size"])
return {"total_variation": calc_total_variation(landscape)}
#Call for the function computing the fourier density
#Setting up the route under which the function can be accessed
@blp_metrics.route("/fourier_density", methods=["POST"])
#Example arguments
@blp_metrics.arguments(
MetricsRequestSchema,
example=dict(
num_qubits=1,
num_layers=1,
schmidt_rank=2,
num_data_points=3,
grid_size=3,
),
)
@blp_metrics.response(200, MetricsResponseSchema)
def calculate_fourier_density(inputs: dict):
check_metric_inputs(inputs)
landscape = get_loss_landscape(inputs["num_qubits"], inputs["num_layers"], inputs["schmidt_rank"], inputs["num_data_points"], inputs["grid_size"])
return {"fourier_density": calc_fourier_density(landscape)}
#Call for the function computing the inverse standart gradient deviation
#Setting up the route under which the function can be accessed
@blp_metrics.route("/inverse_standard_gradient_deviation", methods=["POST"])
#Example arguments
@blp_metrics.arguments(
MetricsRequestSchema,
example=dict(
num_qubits=1,
num_layers=1,
schmidt_rank=2,
num_data_points=3,
grid_size=3,
),
)
@blp_metrics.response(200, MetricsResponseSchema)
def calculate_inverse_standard_gradient_deviation(inputs: dict):
check_metric_inputs(inputs)
landscape = get_loss_landscape(inputs["num_qubits"], inputs["num_layers"], inputs["schmidt_rank"], inputs["num_data_points"], inputs["grid_size"])
return {"inverse_standard_gradient_deviation": calc_IGSD(landscape).tolist()}
#Call for the function computing the scalar curvature
#Setting up the route under which the function can be accessed
@blp_metrics.route("/scalar_curvature", methods=["POST"])
#Example arguments
@blp_metrics.arguments(
MetricsRequestSchema,
example=dict(
num_qubits=1,
num_layers=1,
schmidt_rank=2,
num_data_points=3,
grid_size=3,
),
)
@blp_metrics.response(200, MetricsResponseSchema)
def calculate_scalar_curvature(inputs: dict):
check_metric_inputs(inputs)
landscape = get_loss_landscape(inputs["num_qubits"], inputs["num_layers"], inputs["schmidt_rank"], inputs["num_data_points"], inputs["grid_size"])
return {"scalar_curvature": str(calc_scalar_curvature(landscape).tolist())}
#Blueprint for the ansatz characteristics
blp_characteristics = Blueprint(
"ansatz_characteristics",
__name__,
"calculates the ansatz_characteristics"
)
#Request schema for the entanglement capability tool
class EntanglementCapabilityRequestSchema(ma.Schema):
qasm = ma.fields.String()
noise = ma.fields.Boolean()
measure = ma.fields.String()
shots = ma.fields.Int()
#Response schema for the entanglement capability tool
class EntanglementCapabilityResponseSchema(ma.Schema):
entanglement_capability = ma.fields.List(ma.fields.Float())
#Call for the function computing the entanglement capability
#Setting up the route under which the function can be accessed
@blp_characteristics.route("/entanglement_capability", methods=["POST"])
#Example arguments
@blp_characteristics.arguments(
EntanglementCapabilityRequestSchema,
example=dict(
qasm='''OPENQASM 3.0;include "stdgates.inc";input float[64] phi;qubit[2] q;rx(phi) q[0];''',
noise = True,
measure='''scott''',
shots = 1024
),
)
@blp_characteristics.response(200, EntanglementCapabilityResponseSchema)
def calculate_entanglement_capability(inputs: dict):
qcircuit = qiskit.qasm3.loads(inputs["qasm"])
if inputs["noise"]:
noise_model = qiskitNoiseModel.NoiseModel()
else:
noise_model = None
cricuit = CircuitDescriptor(qcircuit,qcircuit.parameters,None)
entagle_calc = EntanglementCapability(cricuit, noise_model)
return {"entanglement_capability": entagle_calc.entanglement_capability(inputs["measure"], inputs["shots"])}
#Request schema for the expressibility tool
class ExpressibilityRequestSchema(ma.Schema):
num_tries = ma.fields.Int()
num_bins = ma.fields.Int()
num_qubits = ma.fields.Int()
#Response schema for the expressibility tool
class ExpressibilityResponseSchema(ma.Schema):
expressibility = ma.fields.Float()
#Call for the function computing the expressibility
#Setting up the route under which the function can be accessed
@blp_characteristics.route("/expressibility", methods=["POST"])
#Example arguments
@blp_characteristics.arguments(
ExpressibilityRequestSchema,
example=dict(
num_tries = 1000,
num_bins = 50,
num_qubits = 2
),
)
@blp_characteristics.response(200, ExpressibilityResponseSchema)
def calculate_expressibility(inputs:dict):
check_expressibility_inputs(inputs)
return {"expressibility": expressibility(inputs["num_tries"] , inputs["num_bins"], inputs["num_qubits"])}
#Blueprint for the zx-calculus
blp_zx_calculus = Blueprint(
"zx-calculus",
__name__,
"calculates ZX-Calculus"
)
#Request schema for the expressibility tool
class ZXCalculusRequestSchema(ma.Schema):
ansatz = ma.fields.String()
num_qubits = ma.fields.Int()
num_layers = ma.fields.Int()
hamiltonian = ma.fields.String()
parameter = ma.fields.Int()
#Response schema for the expressibility tool
class ZXCalculusResponseSchema(ma.Schema):
zx_calculus = ma.fields.String()
#Call for the function computing the zxw-calculus
#Setting up the route under which the function can be accessed
@blp_zx_calculus.route("/zx-calculus", methods=["POST"])
#Example arguments
@blp_zx_calculus.arguments(
ZXCalculusRequestSchema,
example=dict(
ansatz='sim1',
num_qubits=2,
num_layers=1,
hamiltonian='ZZ',
parameter=0,
),
)
@blp_zx_calculus.response(200, ZXCalculusResponseSchema)
def zx_calculus(inputs: dict):
check_zx_calculus_inputs(inputs)
binary_path = 'zx-calculus/target/release/bpdetect'
ansatz = inputs["ansatz"]
num_qubits = inputs["num_qubits"]
num_layers = inputs["num_layers"]
hamiltonian = inputs["hamiltonian"]
parameter = inputs["parameter"]
p = Popen([binary_path, ansatz, str(num_qubits), str(num_layers), hamiltonian, str(parameter)], stdout=PIPE, stderr=PIPE)
variance, _ = p.communicate()
if p.returncode != 0:
print(_.decode('ASCII').strip())
return {"zx_calculus": _.decode('ASCII').strip()}
else:
variance = variance.decode('ASCII').rstrip()
s = f"{ansatz}-{num_qubits}-{num_layers}-{hamiltonian}-{parameter}: {variance}"
print(s)
return {"zx_calculus": s}
def get_loss_landscape(num_qubits, num_layers, schmidt_rank, num_data_points, grid_size):
qnn = get_qnn("CudaU2", list(range(num_qubits)), num_layers, device="cpu")
unitary = torch.tensor(data=np.array(random_unitary_matrix(num_qubits)), dtype=torch.complex128, device="cpu")
inputs = generate_data_points(type_of_data=1, schmidt_rank=schmidt_rank, num_data_points=num_data_points, U=unitary, num_qubits=num_qubits)
dimensions = num_qubits * num_layers * 3
loss_landscape = generate_loss_landscape(grid_size=grid_size, dimensions=dimensions, inputs=inputs, U=unitary, qnn=qnn)
return loss_landscape
class InvalidInputError(Exception):
pass
@app.errorhandler(InvalidInputError)
def handle_invalid_input(error):
response = {"error": str(error)}
return response, 400
def check_metric_inputs(inputs):
if inputs["num_qubits"] < 1:
raise InvalidInputError("The number of qubits (num_qubits) must be at least 1.")
elif inputs["num_layers"] < 1:
raise InvalidInputError("The number of layers (num_layers) must be at least 1.")
elif inputs["schmidt_rank"] < 1:
raise InvalidInputError("The Schmidt rank (schmidt_rank) must be at least 1.")
elif inputs["schmidt_rank"] > 2**inputs["num_qubits"]:
raise InvalidInputError("The Schmidt rank (schmidt_rank) has to be equal or less than 2^num_qubits.")
elif inputs["num_data_points"] < 1:
raise InvalidInputError("The number of data points (num_data_points) must be at least 1.")
elif inputs["grid_size"] < 1:
raise InvalidInputError("The grid size (grid_size) must be at least 1.")
def check_entanglement_capability_inputs(inputs):
if inputs["shots"] < 1:
raise InvalidInputError("The number of shots (shots) must be at least 1.")
def check_expressibility_inputs(inputs):
if inputs["num_tries"] < 1:
raise InvalidInputError("The number of tries (num_tries) must be at least 1.")
elif inputs["num_bins"] < 1:
raise InvalidInputError("The number of bins (num_bins) must be at least 1.")
elif inputs["num_qubits"] < 1:
raise InvalidInputError("The number of qubits (num_qubits) must be at least 1.")
def check_zx_calculus_inputs(inputs):
if inputs["num_qubits"] < 1:
raise InvalidInputError("The number of qubits (num_qubits) must be at least 1.")
elif inputs["num_layers"] < 1:
raise InvalidInputError("The number of layers (num_layers) must be at least 1.")
elif inputs["parameter"] < 0:
raise InvalidInputError("The parameter (parameter) must be at least 0.")
def test_qnn_generation():
for num_qubits in range(1, 10):
for num_layers in range(1,10):
qnn = get_qnn("CudaU2", list(range(num_qubits)), num_layers, device="cpu")
print(qnn.params)
def test_input_generation():
# schmidt_rank <= 2^(num_qubits)
for num_qubits in range(1, 6):
for s_rank in range(1, 2**num_qubits+1):
unitary = torch.tensor(data=np.array(random_unitary_matrix(num_qubits)), dtype=torch.complex128, device="cpu")
inputs = generate_data_points(type_of_data=1, schmidt_rank=4, num_data_points=100, U = unitary, num_qubits=6)
print(inputs.shape)
def test_loss_landscape_calculation():
for num_qubits in range (1, 4):
num_layers = 1
qnn = get_qnn("CudaU2", list(range(num_qubits)), num_layers, device="cpu")
unitary = torch.tensor(data=np.array(random_unitary_matrix(num_qubits)), dtype=torch.complex128, device="cpu")
inputs = generate_data_points(type_of_data=1, schmidt_rank=2, num_data_points=3, U=unitary, num_qubits=num_qubits)
dimensions = num_qubits * num_layers * 3
loss_landscape = generate_loss_landscape(grid_size=3, dimensions=dimensions, inputs=inputs, U=unitary, qnn=qnn)
print(loss_landscape)
def test_api():
with app.test_client() as client:
inputs = {
"num_qubits": 1,
"num_layers": 1,
"schmidt_rank": 2,
"num_data_points": 3,
"grid_size": 3
}
response = client.post("/calculate_total_variation", json=inputs)
print("Status Code:", response.status_code)
print("Response JSON:", response.get_json())
api.register_blueprint(blp_metrics)
api.register_blueprint(blp_characteristics)
api.register_blueprint(blp_zx_calculus)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=8000)