-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathREADME.Rmd
462 lines (345 loc) · 15 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%",
dpi = 92,
fig.retina = 2
)
# Digits to print
options("digits"=3)
set.seed(1)
# Get minimum R requirement
dep <- as.vector(read.dcf('DESCRIPTION')[, 'Depends'])
rvers <- substring(dep, 7, nchar(dep)-1)
# m <- regexpr('R *\\\\(>= \\\\d+.\\\\d+.\\\\d+\\\\)', dep)
# rm <- regmatches(dep, m)
# rvers <- gsub('.*(\\\\d+.\\\\d+.\\\\d+).*', '\\\\1', dep)
# Function for TOC
# https://gist.github.com/gadenbuie/c83e078bf8c81b035e32c3fc0cf04ee8
```
# groupdata2 <a href='https://github.com/LudvigOlsen/groupdata2'><img src='man/figures/groupdata2_logo_242x280_250dpi.png' align="right" height="140" /></a>
**Author:** [Ludvig R. Olsen](https://www.ludvigolsen.dk/) ( r-pkgs@ludvigolsen.dk ) <br/>
**License:** [MIT](https://opensource.org/license/mit) <br/>
**Started:** October 2016
[![CRAN_Status_Badge](https://www.r-pkg.org/badges/version/groupdata2)](https://cran.r-project.org/package=groupdata2)
[![metacran downloads](https://cranlogs.r-pkg.org/badges/groupdata2)](https://cran.r-project.org/package=groupdata2)
[![minimal R version](https://img.shields.io/badge/R%3E%3D-`r rvers`-6666ff.svg)](https://cran.r-project.org/)
[![Codecov test coverage](https://codecov.io/gh/ludvigolsen/groupdata2/branch/master/graph/badge.svg)](https://app.codecov.io/gh/ludvigolsen/groupdata2?branch=master)
[![GitHub Actions CI status](https://github.com/ludvigolsen/groupdata2/actions/workflows/R-check.yaml/badge.svg?branch=master)](https://github.com/ludvigolsen/groupdata2/actions/workflows/R-check.yaml?branch=master)
[![AppVeyor build status](https://ci.appveyor.com/api/projects/status/github/LudvigOlsen/groupdata2?branch=master&svg=true)](https://ci.appveyor.com/project/LudvigOlsen/groupdata2)
[![DOI](https://zenodo.org/badge/72371128.svg)](https://zenodo.org/badge/latestdoi/72371128)
## Overview
R package for dividing data into groups.
* Create **balanced partitions** and cross-validation **folds**.
* Perform time series **windowing** and general **grouping** and **splitting** of data.
* **Balance** existing groups with **up- and downsampling**.
* **Collapse** existing groups to fewer, balanced groups.
* Finds values, or indices of values, that **differ** from the previous value by some threshold(s).
* Check if two grouping factors have the same groups, **memberwise**.
### Main functions
|Function |Description |
|:---------------------|:------------------------------------------------------------------|
|`group_factor()` |Divides data into groups by a wide range of methods. |
|`group()` |Creates grouping factor and adds to the given data frame. |
|`splt()` |Creates grouping factor and splits the data by these groups. |
|`partition()` |Splits data into partitions. Balances a given categorical variable and/or numerical variable between partitions and keeps all data points with a shared ID in the same partition. |
|`fold()` |Creates folds for (repeated) cross-validation. Balances a given categorical variable and/or numerical variable between folds and keeps all data points with a shared ID in the same fold. |
|`collapse_groups()` |Collapses existing groups into a smaller set of groups with categorical, numerical, ID, and size balancing. |
|`balance()` |Uses up- and/or downsampling to equalize group sizes. Can balance on ID level. See wrappers: `downsample()`, `upsample()`.|
### Other tools
|Function |Description |
|:-------------------------|:------------------------------------------------------------------|
|`all_groups_identical()` |Checks whether two grouping factors contain the same groups, *memberwise*.|
|`differs_from_previous()` |Finds values, or indices of values, that differ from the previous value by some threshold(s).|
|`find_starts()` |Finds values or indices of values that are not the same as the previous value.|
|`find_missing_starts()` |Finds missing starts for the `l_starts` method.|
|`summarize_group_cols()` |Calculates summary statistics about group columns (i.e. `factor`s).|
|`summarize_balances()` |Summarizes the balances of numeric, categorical, and ID columns in and between groups in one or more group columns. |
|`ranked_balances()` |Extracts the standard deviations from the `Summary` data frame from the output of `summarize_balances()` |
|`%primes%` |Finds remainder for the `primes` method. |
|`%staircase%` |Finds remainder for the `staircase` method.|
## Table of Contents
```{r toc, echo=FALSE}
groupdata2:::render_toc("README.Rmd")
```
## Installation
CRAN version:
> `install.packages("groupdata2")`
Development version:
> `install.packages("devtools")`
> `devtools::install_github("LudvigOlsen/groupdata2")`
## Vignettes
`groupdata2` contains a number of vignettes with relevant use cases and descriptions:
> `vignette(package = "groupdata2")` # for an overview
> `vignette("introduction_to_groupdata2")` # begin here
## Data for examples
```{r error=FALSE, warning=FALSE, message=FALSE}
# Attach packages
library(groupdata2)
library(dplyr) # %>% filter() arrange() summarize()
library(knitr) # kable()
```
```{r}
# Create small data frame
df_small <- data.frame(
"x" = c(1:12),
"species" = rep(c('cat', 'pig', 'human'), 4),
"age" = sample(c(1:100), 12),
stringsAsFactors = FALSE
)
```
```{r}
# Create medium data frame
df_medium <- data.frame(
"participant" = factor(rep(c('1', '2', '3', '4', '5', '6'), 3)),
"age" = rep(c(20, 33, 27, 21, 32, 25), 3),
"diagnosis" = factor(rep(c('a', 'b', 'a', 'b', 'b', 'a'), 3)),
"diagnosis2" = factor(sample(c('x','z','y'), 18, replace = TRUE)),
"score" = c(10, 24, 15, 35, 24, 14, 24, 40, 30,
50, 54, 25, 45, 67, 40, 78, 62, 30))
df_medium <- df_medium %>% arrange(participant)
df_medium$session <- rep(c('1','2', '3'), 6)
```
## Functions
### group_factor()
Returns a factor with group numbers, e.g. `factor(c(1,1,1,2,2,2,3,3,3))`.
This can be used to subset, aggregate, group_by, etc.
Create equally sized groups by setting `force_equal = TRUE`
Randomize grouping factor by setting `randomize = TRUE`
```{r}
# Create grouping factor
group_factor(
data = df_small,
n = 5,
method = "n_dist"
)
```
### group()
Creates a grouping factor and adds it to the given data frame. The data frame is grouped by the grouping factor for easy use in `magrittr` (`%>%`) pipelines.
```{r}
# Use group()
group(data = df_small, n = 5, method = 'n_dist') %>%
kable()
```
```{r}
# Use group() in a pipeline
# Get average age per group
df_small %>%
group(n = 5, method = 'n_dist') %>%
dplyr::summarise(mean_age = mean(age)) %>%
kable()
```
```{r}
# Using group() with 'l_starts' method
# Starts group at the first 'cat',
# then skips to the second appearance of "pig" after "cat",
# then starts at the following "cat".
df_small %>%
group(n = list("cat", c("pig", 2), "cat"),
method = 'l_starts',
starts_col = "species") %>%
kable()
```
### splt()
Creates the specified groups with `group_factor()` and splits the given data by the grouping factor with `base::split`. Returns the splits in a list.
```{r}
splt(data = df_small,
n = 3,
method = 'n_dist') %>%
kable()
```
### partition()
Creates (optionally) balanced partitions (e.g. training/test sets). Balance partitions on categorical variable(s) and/or a numerical variable. Make sure that all datapoints sharing an ID is in the same partition.
```{r}
# First set seed to ensure reproducibility
set.seed(1)
# Use partition() with categorical and numerical balancing,
# while ensuring all rows per ID are in the same partition
df_partitioned <- partition(
data = df_medium,
p = 0.7,
cat_col = 'diagnosis',
num_col = "age",
id_col = 'participant'
)
df_partitioned %>%
kable()
```
### fold()
Creates (optionally) balanced folds for use in cross-validation. Balance folds on categorical variable(s) and/or a numerical variable. Ensure that all datapoints sharing an ID is in the same fold. Create multiple unique fold columns at once, e.g. for repeated cross-validation.
```{r}
# First set seed to ensure reproducibility
set.seed(1)
# Use fold() with categorical and numerical balancing,
# while ensuring all rows per ID are in the same fold
df_folded <- fold(
data = df_medium,
k = 3,
cat_col = 'diagnosis',
num_col = "age",
id_col = 'participant'
)
# Show df_folded ordered by folds
df_folded %>%
arrange(.folds) %>%
kable()
```
```{r}
# Show distribution of diagnoses and participants
df_folded %>%
group_by(.folds) %>%
count(diagnosis, participant) %>%
kable()
```
```{r}
# Show age representation in folds
# Notice that we would get a more even distribution if we had more data.
# As age is fixed per ID, we only have 3 ages per category to balance with.
df_folded %>%
group_by(.folds) %>%
summarize(mean_age = mean(age),
sd_age = sd(age)) %>%
kable()
```
**Notice**, that the we now have the opportunity to include the *session* variable and/or use *participant* as a random effect in our model when doing cross-validation, as any participant will only appear in one fold.
We also have a balance in the representation of each diagnosis, which could give us better, more consistent results.
### collapse_groups()
Collapses a set of groups into a smaller set of groups while attempting to balance the new groups by specified numerical columns, categorical columns, level counts in ID columns, and/or the number of rows.
```{r}
# We consider each participant a group
# and collapse them into 3 new groups
# We balance the number of levels in diagnosis2 column,
# as this diagnosis is not constant within the participants
df_collapsed <- collapse_groups(
data = df_medium,
n = 3,
group_cols = 'participant',
cat_cols = 'diagnosis2',
num_cols = "score"
)
# Show df_collapsed ordered by new collapsed groups
df_collapsed %>%
arrange(.coll_groups) %>%
kable()
# Summarize the balances of the new groups
coll_summ <- df_collapsed %>%
summarize_balances(group_cols = '.coll_groups',
cat_cols = "diagnosis2",
num_cols = "score")
coll_summ$Groups %>%
kable()
coll_summ$Summary %>%
kable()
# Check the across-groups standard deviations
# This is a measure of how balanced the groups are (lower == more balanced)
# and is especially useful when comparing multiple group columns
coll_summ %>%
ranked_balances() %>%
kable()
```
**Recommended**: By enabling the `auto_tune` setting, we often get a much better balance.
### balance()
Uses up- and/or downsampling to fix the group sizes to the min, max, mean, or median group size or to a specific number of rows.
Balancing can also happen on the ID level, e.g. to ensure the same number of IDs in each category.
```{r}
# Lets first unbalance the dataset by removing some rows
df_b <- df_medium %>%
arrange(diagnosis) %>%
filter(!row_number() %in% c(5,7,8,13,14,16,17,18))
# Show distribution of diagnoses and participants
df_b %>%
count(diagnosis, participant) %>%
kable()
```
```{r}
# First set seed to ensure reproducibility
set.seed(1)
# Downsampling by diagnosis
balance(
data = df_b,
size = "min",
cat_col = "diagnosis"
) %>%
count(diagnosis, participant) %>%
kable()
```
```{r}
# Downsampling the IDs
balance(
data = df_b,
size = "min",
cat_col = "diagnosis",
id_col = "participant",
id_method = "n_ids"
) %>%
count(diagnosis, participant) %>%
kable()
```
## Grouping Methods
There are currently 10 methods available. They can be divided into 6 categories.
*Examples of group sizes are based on a vector with 57 elements.*
### Specify group size
##### Method: greedy
Divides up the data greedily given a specified group size.
E.g. group sizes: 10, 10, 10, 10, 10, 7
### Specify number of groups
##### Method: n_dist (Default)
Divides the data into a specified number of groups and
distributes excess data points across groups.
E.g. group sizes: 11, 11, 12, 11, 12
##### Method: n_fill
Divides the data into a specified number of groups and
fills up groups with excess data points from the beginning.
E.g. group sizes: 12, 12, 11, 11, 11
##### Method: n_last
Divides the data into a specified number of groups.
The algorithm finds the most equal group sizes possible,
using all data points. Only the last group is able to differ in size.
E.g. group sizes: 11, 11, 11, 11, 13
##### Method: n_rand
Divides the data into a specified number of groups.
Excess data points are placed randomly in groups (only 1 per group).
E.g. group sizes: 12, 11, 11, 11, 12
### Specify list
##### Method: l_sizes
Uses a list / vector of group sizes to divide up the data.
Excess data points are placed in an extra group.
E.g. `n = c(11, 11)` returns group sizes: 11, 11, 35
##### Method: l_starts
Uses a list of starting positions to divide up the data.
Starting positions are values in a vector (e.g. column in data frame).
Skip to a specific nth appearance of a value by using `c(value, skip_to)`.
E.g. `n = c(11, 15, 27, 43)` returns group sizes: 10, 4, 12, 16, 15
Identical to `n = list(11, 15, c(27, 1), 43` where `1` specifies that we
want the first appearance of 27 after the previous value 15.
If passing `n = "auto"` starting positions are automatically found with `find_starts()`.
### Specify distance between members
##### Method: every
Every `n`th data point is combined to a group.
E.g. group sizes: 12, 12, 11, 11, 11
### Specify step size
##### Method: staircase
Uses step_size to divide up the data.
Group size increases with 1 step for every group, until there is no more data.
E.g. group sizes: 5, 10, 15, 20, 7
### Specify start at
##### Method: primes
Creates groups with sizes corresponding to prime numbers.
Starts at `n` (prime number). Increases to the the next prime number until there is no more data.
E.g. group sizes: 5, 7, 11, 13, 17, 4
## Balancing ID Methods
There are currently 4 methods for balancing (up-/downsampling) on ID level in `balance()`.
##### ID method: n_ids
Balances on ID level only. It makes sure there are the same number of IDs in each category. This might lead to a different number of rows between categories.
##### ID method: n_rows_c
Attempts to level the number of rows per category, while only removing/adding entire IDs. This is done with repetition and by iteratively picking the ID with the number of rows closest to the lacking/excessive number of rows in the category.
##### ID method: distributed
Distributes the lacking/excess rows equally between the IDs. If the number to distribute cannot be equally divided, some IDs will have 1 row more/less than the others.
##### ID method: nested
Balances the IDs within their categories, meaning that all IDs in a category will have the same number of rows.