-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgru.py
110 lines (92 loc) · 3.78 KB
/
gru.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
"""
This script runs a GRU (Gated Recurrent Unit) neural network
and either trains a new model from scratch, or loads a previously trained model,
then evaluates that model on the testing set.
Usage:
- Run this script with `python3 gru.py` to evaluate the trained model on the testing set.
- To retrain the model, run this script with the --train_from_scratch command line argument,
and optionally specify the following hyperparameters:
--use_og_data_only: If set, only trains on the original data without any augmented data.
--use_2_classes: If set, uses 2 classes rather than 3 (collapses class 0 and 1 into one class)
--n_epochs: Integer representing how many epochs to train the model for
--batch_size: Integer representing how large each batch should be
--learning_rate: Float representing the desired learning rate
--hidden_size: Integer representing the desired dimensions of the hidden layer(s) of the NN
--num_layers: Integer representing the number of layers
For further explanations of these flags, consult the README or `utils.py`.
"""
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.model_selection import train_test_split
from tqdm import trange
from data_loader import load_data
from utils import train_model, evaluate_model, load_data_tensors, parse_command_line_args
SAVE_PATH = 'models/gru.pt'
class GRU(nn.Module):
"""
Implementation of a Gated Recurrent Unit neural network.
"""
def __init__(self, vocab_size, hidden_size, output_size, num_layers):
super().__init__()
self.num_layers = num_layers
self.hidden_size = hidden_size
self.emb = nn.Embedding(vocab_size, hidden_size)
self.rnn = nn.GRU(hidden_size, hidden_size,
num_layers=num_layers, batch_first=False)
self.lin = nn.Linear(hidden_size, output_size)
self.sigmoid = nn.Sigmoid()
def forward(self, input_seq):
embeds = self.emb(input_seq)
(out, hn_last) = self.rnn(embeds)
out = out[0, :, :]
scores = self.lin(out)
return self.sigmoid(scores)
if __name__ == "__main__":
args = parse_command_line_args()
# If there's an available GPU, let's use it
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data_train, labels_train, tok_to_ix = load_data_tensors(
args.use_og_data_only)
if args.retrain:
"""
Initialize model with the specified hyperparameters and architecture
"""
hidden_size = args.hidden_size
num_layers = 1 if args.num_layers < 0 else args.num_layers
vocab_size = len(tok_to_ix)
output_size = len(np.unique(labels_train))
model = GRU(
hidden_size=hidden_size,
num_layers=num_layers,
vocab_size=vocab_size,
output_size=output_size)
model = model.to(device)
loss_func = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=args.learning_rate)
model = train_model(
model=model,
loss_func=loss_func,
optimizer=optimizer,
data_train=data_train,
labels_train=labels_train,
n_epochs=args.n_epochs,
batch_size=args.batch_size,
save_path=SAVE_PATH,
device=device)
else:
"""
File was not run with --train_from_scratch, so simply load the model from its saved path
"""
model = torch.load(SAVE_PATH)
"""
Whether we're training or just loading the pretrained model, we finish by
evaluating the model on the testing set.
"""
evaluate_model(
model=model,
tok_to_ix=tok_to_ix,
use_og_data_only=args.use_og_data_only,
bs=args.batch_size,
device=device)