-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline_lr.py
59 lines (47 loc) · 2.07 KB
/
baseline_lr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""
This script trains and evaluates our baseline model, a Logistic Regression classifier.
To run this script, simply execute: `python3 baseline_lr.py`. You can also optionally set the
flag --use_og_data_only to train and test on only the original data without the augmented data.
Example Usage:
python3 baseline_lr.py --use_og_data_only
"""
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import argparse
from data_loader import load_data
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--use_og_data_only',
action='store_true', help='If set, then omits augmented data from training and testing sets')
args = parser.parse_args()
posts_train, labels_train = load_data(
og_file_path="data/train_reddit_submissions.csv",
aug_file_path="data/train_synonym_augmented_reddit_submissions.csv",
include_og=True,
include_aug=not args.use_og_data_only)
posts_test, labels_test = load_data(
og_file_path="data/test_reddit_submissions.csv",
aug_file_path="data/test_synonym_augmented_reddit_submissions.csv",
include_og=True,
include_aug=not args.use_og_data_only)
vectorizer = CountVectorizer(ngram_range=(1, 1))
features_train = vectorizer.fit_transform(posts_train)
"""
Train on 80% training set
"""
model_LR = LogisticRegression(max_iter=1000)
print("Training...")
model_LR.fit(features_train, labels_train)
score_train = model_LR.score(features_train, labels_train)
print('LR Training set score: ', score_train)
"""
Test on 20% held-out dataset
"""
features_test = vectorizer.transform(posts_test)
score_test = model_LR.score(features_test, labels_test)
print('LR Testing set score: ', score_test)
predictions_test = model_LR.predict(features_test)
report = classification_report(labels_test, predictions_test)
print(report)