From 94ba415e18c6f883d711d03c443405e645f247f3 Mon Sep 17 00:00:00 2001 From: LordSomen Date: Sun, 5 Aug 2018 10:53:49 +0530 Subject: [PATCH] dimension reduction techniques --- dimension_reduction/dimension_red.py | 50 ++++++++++++++++++++++++++++ 1 file changed, 50 insertions(+) create mode 100644 dimension_reduction/dimension_red.py diff --git a/dimension_reduction/dimension_red.py b/dimension_reduction/dimension_red.py new file mode 100644 index 0000000..3aba9c4 --- /dev/null +++ b/dimension_reduction/dimension_red.py @@ -0,0 +1,50 @@ +#%% +from sklearn.datasets import fetch_mldata +import numpy as np +mnist = fetch_mldata('MNIST original') +print(mnist) + +#%% +X, Y = mnist["data"], mnist["target"] +print(X) +print(Y) +print(X.shape) +print(Y.shape) + +#%% + +from sklearn.decomposition import PCA + +pca = PCA(n_components=2) +X_2d = pca.fit(X) +print(X_2d) + +#%% +'''choosing n_components effieciently''' +pca = PCA() +pca.fit(X) +cumsum = np.cumsum(pca.explained_variance_ratio_) +d = np.argmax(cumsum >= 0.95) + 1 +print(d) + +#%% +pca = PCA(n_components=0.95) +X_reduced = pca.fit_transform(X) +print(X_reduced.shape) + +#%% +pca = PCA(n_components = 154) +X_mnist_reduced = pca.fit_transform(X) +X_mnist_recovered = pca.inverse_transform(X_mnist_reduced) + +#%% +from sklearn.decomposition import IncrementalPCA +n_batches = 100 +inc_pca = IncrementalPCA(n_components=154) +for X_batch in np.array_split(X, n_batches): + inc_pca.partial_fit(X_batch) +X_mnist_reduced = inc_pca.transform(X) + +#%% +rnd_pca = PCA(n_components=154, svd_solver="randomized") +X_reduced = rnd_pca.fit_transform(X) \ No newline at end of file