diff --git a/AAN/arti_neural_net.py b/AAN/arti_neural_net.py index ca81742..f64fe17 100644 --- a/AAN/arti_neural_net.py +++ b/AAN/arti_neural_net.py @@ -13,6 +13,38 @@ y_pred = per_clf.predict([[2,0.5]]) print(y_pred) + #%% import tensorflow as tf +(X_train , Y_train) , (X_test,Y_test) = tf.keras.datasets.mnist.load_data() +print(X_train.shape,X_test.shape) +X_train = X_train.astype(np.float32).reshape(-1,28*28)/255.0 +X_test = X_test.astype(np.float32).reshape(-1,28*28)/255.0 +Y_train = Y_train.astype(np.int32) +Y_test = Y_test.astype(np.int32) +print(X_train.shape,X_test.shape) +X_valid , X_train = X_train[:5000],X_train[5000:] +Y_valid , Y_train = Y_train[:5000],Y_train[5000:] + +print(X_train) + +#%% +feature_cols = [tf.feature_column.numeric_column( + "X",shape=[28*28])] +dnn_clf = tf.estimator.DNNClassifier(hidden_units= +[300,100],n_classes = 10,feature_columns = feature_cols) + +input_fn = tf.estimator.inputs.numpy_input_fn( + x = {"X":X_train},y=Y_train,num_epochs=40, + batch_size=50, shuffle = True +) +dnn_clf.train(input_fn=input_fn) + +#%% +test_input_fn = tf.estimator.inputs.numpy_input_fn( + x={"X":X_test},y=Y_test,shuffle=False +) +eval_results = dnn_clf.evaluate(input_fn=test_input_fn) + +print(eval_results) \ No newline at end of file