-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathBernoulliMulti.java
147 lines (122 loc) · 5.16 KB
/
BernoulliMulti.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
package lphy.base.distribution;
import lphy.core.model.RandomVariable;
import lphy.core.model.Value;
import lphy.core.model.annotation.GeneratorCategory;
import lphy.core.model.annotation.GeneratorInfo;
import lphy.core.model.annotation.ParameterInfo;
import lphy.core.model.datatype.IntegerValue;
import lphy.core.vectorization.IID;
import org.apache.commons.math3.distribution.BinomialDistribution;
import org.apache.commons.math3.random.RandomGenerator;
import java.util.Map;
import java.util.TreeMap;
import static lphy.base.distribution.DistributionConstants.pParamName;
/**
* A Bernoulli process of n trials.
* Note: because there is a optional condition "minSuccesses",
* It cannot be replaced by {@link IID}.
*
*/
public class BernoulliMulti extends ParametricDistribution<Boolean[]> {
private Value<Double> p;
private Value<Integer> n;
private Value<Integer> minSuccesses;
public final String minSuccessesParamName = "minSuccesses";
private final String repParamName = IID.REPLICATES_PARAM_NAME;
private static final int MAX_TRIES = 1000;
BinomialDistribution binomialDistribution;
public BernoulliMulti(@ParameterInfo(name = pParamName, description = "the probability of success.") Value<Double> p,
@ParameterInfo(name = repParamName, description = "the number of bernoulli trials.") Value<Integer> n,
@ParameterInfo(name = minSuccessesParamName, description = "Optional condition: the minimum number of ones in the boolean array.", optional = true) Value<Integer> minSuccesses) {
super();
this.p = p;
this.n = n;
this.minSuccesses = minSuccesses;
constructDistribution(random);
}
@Override
protected void constructDistribution(RandomGenerator random) {
binomialDistribution = new BinomialDistribution(random, n.value(), p.value());
}
@GeneratorInfo(name = "Bernoulli", verbClause = "has", narrativeName = "coin toss distribution prior",
category = GeneratorCategory.PRIOR,
examples = {"simpleRandomLocalClock.lphy", "https://linguaphylo.github.io/tutorials/discrete-phylogeography/"},
description = "The Bernoulli process for n iid trials. The success (true) probability is p. Produces a boolean n-tuple.")
public RandomVariable<Boolean[]> sample() {
Boolean[] b = bernoulli(p.value(), n.value());
if (minSuccesses != null) {
double[] p = new double[n.value()-minSuccesses.value()];
double probSum = 0.0;
int k = minSuccesses.value();
for (int i = 0; i < p.length; i++) {
p[i] = binomialDistribution.probability(i+k);
probSum += p[i];
}
if (probSum > 0.0) {
double U = random.nextDouble() * probSum;
probSum = 0.0;
int index = 0;
for (int i = 0; i < p.length; i++) {
probSum += p[i];
if (probSum > U) {
index = i;
break;
}
}
RandomBooleanArray randomBooleanArray = new RandomBooleanArray(n, new IntegerValue(index+k, null));
b = randomBooleanArray.sample().value();
} else {
throw new RuntimeException(minSuccessesParamName + " is too high and there is no probability above it due to numerical precision.");
}
}
return new RandomVariable<>(null, b, this);
}
private int hammingWeight(Boolean[] b) {
int sum = 0;
for (Boolean i : b) {
if (i) sum += 1;
}
return sum;
}
private Boolean[] bernoulli(double p, int n) {
Boolean[] successes = new Boolean[n];
for (int i = 0; i < successes.length; i++) {
successes[i] = (random.nextDouble() < p);
}
return successes;
}
public double logDensity(Boolean[] successes) {
double logP = 0.0;
double lnp = Math.log(p.value());
double ln1mp = Math.log(1.0 - p.value());
for (int i = 0; i < successes.length; i++) {
logP += successes[i] ? lnp : ln1mp;
}
return logP;
}
@Override
public Map<String, Value> getParams() {
return new TreeMap<>() {{
put(pParamName, p);
put(repParamName, n);
if (minSuccesses != null) put(minSuccessesParamName, minSuccesses); // optional
}};
}
@Override
public void setParam(String paramName, Value value) {
if (paramName.equals(pParamName)) p = value;
else if (paramName.equals(repParamName)) n = value;
else if (paramName.equals(minSuccessesParamName)) minSuccesses = value;
else throw new RuntimeException("Unrecognised parameter name: " + paramName);
super.setParam(paramName, value); // constructDistribution
}
// public void setSuccessProbability(double p) {
// this.p.setValue(p);
// }
public Value<Double> getP() {
return getParams().get(pParamName);
}
public Value<Integer> getMinSuccesses() {
return getParams().get(minSuccessesParamName);
}
}