-
Notifications
You must be signed in to change notification settings - Fork 4
/
babel.py
299 lines (245 loc) · 11.2 KB
/
babel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# coding=utf-8
# Copyright 2023 Ling-Hao CHEN (https://lhchen.top) from Tsinghua University.
#
# For all the datasets, be sure to read and follow their license agreements,
# and cite them accordingly.
# If the unifier is used in your research, please consider to cite as:
#
# @article{chen2023unimocap,
# title={UniMocap: Unifier for BABEL, HumanML3D, and KIT},
# author={Chen, Ling-Hao and UniMocap, Contributors},
# journal={https://github.com/LinghaoChan/UniMoCap},
# year={2023}
# }
#
# @inproceedings{petrovich23tmr,
# title = {{TMR}: Text-to-Motion Retrieval Using Contrastive {3D} Human Motion Synthesis},
# author = {Petrovich, Mathis and Black, Michael J. and Varol, G{\"u}l},
# booktitle = {International Conference on Computer Vision ({ICCV})},
# year = {2023}
# }
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. We provide a license to use the code,
# please read the specific details carefully.
#
# ------------------------------------------------------------------------------------------------
# Copyright (c) Mathis Petrovich.
# ------------------------------------------------------------------------------------------------
# Portions of this code were adapted from the following open-source project:
# https://github.com/Mathux/AMASS-Annotation-Unifier
# ------------------------------------------------------------------------------------------------
import os
import pandas as pd
from sanitize_text import sanitize
from tools.amass import compute_duration, load_amass_npz
from tools.jtools import load_json, save_dict_json
from tools.saving import store_keyid
from tqdm import tqdm
def process_babel(amass_path: str, babel_path: str, mode: str = "all", outputs: str = "outputs-json"):
"""
Process BABEL dataset and convert it into a specific annotation format.
Args:
amass_path (str): The path to the AMASS dataset.
babel_path (str): The path to the BABEL dataset.
mode (str, optional): Processing mode, can be "all", "seq", or "seg". Default is "all".
outputs (str, optional): Output directory for saving processed annotations. Default is "outputs-json".
Returns:
dict: A dictionary containing processed annotations.
Raises:
AssertionError: If the mode is not one of ["all", "seq", "seg"].
"""
# Ensure that the mode is valid
assert mode in ["all", "seq", "seg"]
# Create the output directory if it doesn't exist
os.makedirs(outputs, exist_ok=True)
# Define the path for saving the JSON index file
save_json_index_path = os.path.join(outputs, "babel.json")
if mode != "all":
save_json_index_path = os.path.join(outputs, f"babel_{mode}.json")
# Define paths for train and validation JSON files in the BABEL dataset
train_path = os.path.join(babel_path, "train.json")
val_path = os.path.join(babel_path, "val.json")
# Load the train and validation JSON files as dictionary
train_dico = load_json(train_path)
val_dico = load_json(val_path)
# Merge train and validation dictionaries into one
all_dico = {**val_dico, **train_dico}
# Initialize an empty dictionary for storing processed annotations
dico = {}
# Iterate through each entry in the BABEL dataset
for keyid, babel_ann in tqdm(all_dico.items()):
path = babel_ann["feat_p"]
babel_ann = all_dico[keyid]
# Zero-fill the keyid to a length of 5
keyid = keyid.zfill(5)
# Modify the path to remove the first directory component
path = "/".join(path.split("/")[1:])
# Get the duration from BABEL annotations
dur = babel_ann["dur"]
# Load AMASS data
npz_path = os.path.join(amass_path, path)
smpl_data = load_amass_npz(npz_path)
# Compute the duration from the loaded data
c_dur = compute_duration(smpl_data)
duration = c_dur
# Ensure that the computed duration is similar to the BABEL duration
assert abs(c_dur - dur) < 0.25
# Initialize an empty list to store annotations
annotations = []
# Process sequence-level annotations if the mode is "seq" or "all"
if mode in ["seq", "all"]:
start = 0.0
end = c_dur
if not ((labels := babel_ann["seq_ann"]) and (labels := labels["labels"])):
labels = []
# Extract sequence-level labels from BABEL annotations
for idx, data in enumerate(labels):
text = data["raw_label"]
text = sanitize(text)
element = {
# to save the correspondance
# with the original BABEL dataset
"seg_id": f"{keyid}_seq_{idx}",
"babel_id": data["seg_id"],
"text": text,
"start": start,
"end": end,
"type": "seq"
}
annotations.append(element)
# Process segment-level annotations if the mode is "seg" or "all"
if mode in ["seg", "all"]:
if not ((labels := babel_ann["frame_ann"]) and (labels := labels["labels"])):
labels = []
# Extract segmentation-level labels from BABEL annotations
for idx, data in enumerate(labels):
text = data["raw_label"]
text = sanitize(text)
start = data["start_t"]
end = data["end_t"]
element = {
# to save the correspondance
# with the original BABEL dataset
"seg_id": f"{keyid}_seg_{idx}",
"babel_id": data["seg_id"],
"text": text,
"start": start,
"end": end,
"type": "seg"
}
annotations.append(element)
# Store annotations in the dictionary if there's at least one
if len(annotations) >= 1:
store_keyid(dico, keyid, path, duration, annotations)
# Save the processed annotations as a JSON file
save_dict_json(dico, save_json_index_path)
print(f"Saving the annotations to {save_json_index_path}")
# Return the processed annotations dictionary for saving csv file
return dico
def save_csv(babel_json, mode):
"""
Save annotations from the BABEL JSON data into CSV files in a specific format.
Args:
babel_json (dict): A dictionary containing BABEL JSON data.
mode (str): Processing mode, used to name the output CSV file.
Returns:
None
Notes:
- The function processes BABEL JSON annotations and converts them into a specific CSV format.
- It creates a directory 'babel_new_text' to store text files extracted from annotations.
- It generates a CSV file containing information about the source data, start and end frames, and new file names.
Raises:
None
"""
fps = 20 # Frames per second for frame calculation
counting = 0 # Counter for generating new file names
# Remove existing 'babel_new_text' or 'babel_new_text_{mode}' directory and create a new one
if mode != "all":
os.system(f"rm -r ./babel_new_text_{mode}")
os.makedirs(f"babel_new_text_{mode}", exist_ok=True)
else:
os.system(f"rm -r ./babel_new_text")
os.makedirs(f"babel_new_text", exist_ok=True)
# Create an empty DataFrame to store CSV data
df = pd.DataFrame({
"source_path": [],
"start_frame": [],
"end_frame": [],
"new_name": [],
})
# Iterate through BABEL JSON data
for keyid, dico in tqdm(babel_json.items()):
# Build the path to the source data file
source_path_file = "./datasets/HumanML3D/pose_data/" + \
dico["path"] + ".npy"
# Extract annotations from the BABEL JSON
meta_annotation = dico["annotations"]
# Iterate through annotation segments
for seg in meta_annotation:
text = seg["text"]
start_frame = int(seg["start"] * fps)
end_frame = int(seg["end"] * fps)
# Generate a unique new name for the text file
idstr = "%06d" % counting
new_name = idstr + ".npy"
# Create a text file with the extracted text
if mode == "all":
txt_path = os.path.join("babel_new_text", idstr + ".txt")
else:
txt_path = os.path.join(
f"babel_new_text_{mode}", idstr + ".txt")
with open(txt_path, "w") as f:
f.write(text)
# Create a new row for the DataFrame with annotation data
df_new_data = pd.DataFrame({
"source_path": [source_path_file],
"start_frame": [start_frame//1], # Convert to integer
"end_frame": [end_frame//1], # Convert to integer
"new_name": [new_name],
})
# Append the new data to the DataFrame
df = df._append(df_new_data, ignore_index=True)
counting += 1
# Determine the output CSV file name based on the mode
if mode != "all":
df.to_csv(f'babel{mode}_h3dformat.csv')
else:
df.to_csv('babel_h3dformat.csv')
# Print the total number of generated sequence files
# Use shell command to count and display the number of text files in 'babel_new_text' directory
print("Sequence number: ", end='')
os.system("ls -lh ./babel_new_text/ | wc -l")
if __name__ == "__main__":
"""
This script processes BABEL dataset annotations and converts them into CSV files
in a specific format, suitable for further analysis and use in machine learning tasks.
The script performs the following main steps:
1. It defines paths to the AMASS and BABEL datasets and specifies processing modes,
which supports 'all', 'seg', and 'seq' modes.
2. For each processing mode, it calls the "process_babel" function to process BABEL
dataset annotations, obtaining JSON annotations.
3. It then calls the "save_csv" function to save the processed annotations into CSV files.
4. The generated CSV files are named based on the processing mode, making it easy to
differentiate between different types of annotations.
"""
# Define the paths to the AMASS and BABEL datasets
amass_path = "datasets/amass_data/"
babel_path = "datasets/babel-teach/"
# Define the processing modes
modes = ["all", "seq", "seg"]
# Iterate through each processing mode
for mode in modes:
# Process BABEL dataset and obtain JSON annotations
babel_json = process_babel(amass_path, babel_path, mode=mode)
# Save processed annotations into CSV files
save_csv(babel_json=babel_json, mode=mode)