-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdraw_heatmap
executable file
·44 lines (32 loc) · 1.15 KB
/
draw_heatmap
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#!/usr/bin/env python
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sys
# bpp_file = sys.argv[1]
seq_length = int(sys.argv[1])
matrix = [[0.0 for x in range(seq_length)] for y in range(seq_length)]
# data processing
# for line in open(bpp_file):
for line in sys.stdin.readlines():
line = line.strip()
if line == "": break
i, j, prob = line.split()
matrix[int(j)-1][int(i)-1] = float(prob)
sns.set(style="white")
matrix_ticks = pd.DataFrame(data=matrix,
columns=range(1,seq_length+1),
index=range(1,seq_length+1))
# Generate a mask for the upper triangle
mask = np.triu(np.ones_like(matrix, dtype=np.bool))
# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(10, 10))
# Generate a custom diverging colormap
cmap = sns.diverging_palette(220, 10, as_cmap=True)
# cmap = sns.diverging_palette(220, 10)
sns.heatmap(matrix_ticks, mask=mask, cmap=cmap, vmax=1., center=0,
square=True, linewidths=.5, cbar_kws={"shrink": .5},
xticklabels="auto", yticklabels="auto")
# plt.savefig(bpp_file+"_heatmap", format="pdf")
plt.savefig("heatmap", format="pdf")