-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
337 lines (302 loc) · 15.5 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
from tqdm import tqdm
import torch
import torch.nn.functional as F
from typing import Dict, Iterable, Optional
import os
from einops import rearrange, repeat
from pytorch_lightning import seed_everything
import json
import numpy as np
import argparse
import math
import resource
from utils import evaluate_scores, load_json
from models.postprocessors import build_postprocessors
from data.dataset.refcoco_eval import CocoEvaluator, RefExpEvaluator
from util.metrics import MetricLogger
from util.misc import targets_to
import util.dist as dist
from models.diffusion import get_noisy_latents
from models.pipeline import load_pipeline
import open_clip
from models.diffusion import get_sd_model, load_unet_lora
@torch.no_grad()
def evaluate_alignment(args, unet, loader, save_dir, device, dtype, clip=None, is_save=True, use_lora=True,
num_inference_steps=20, show_tqdm=False):
if is_save:
save_dir = os.path.join(save_dir, f'images_generated_val_seed{args.seed}')
os.makedirs(save_dir, exist_ok=True)
# create pipeline
pipeline = load_pipeline(args, unet.state_dict(), device, dtype, use_lora=use_lora)
pipeline = pipeline.to(device)
pipeline.enable_vae_slicing()
pipeline.set_progress_bar_config(disable=True)
# create clip
if clip is None:
model, _, preprocess = open_clip.create_model_and_transforms('ViT-H-14', pretrained='laion2b_s32b_b79k')
model = model.to(device)
tokenizer = open_clip.get_tokenizer('ViT-H-14')
else:
model, preprocess, tokenizer = clip
# run inference
generator = torch.Generator(device=device)
if args.seed is not None:
generator = generator.manual_seed(args.seed)
sims = []
iter_loader = tqdm(loader, disable=(not show_tqdm), total=len(loader))
for batch in iter_loader:
ins_prompts, prompts = batch
prompts = list(prompts)
# generate
pil_images = pipeline(prompts, num_inference_steps=num_inference_steps, generator=generator).images
if is_save:
for i_img in range(len(pil_images)):
save_path = os.path.join(save_dir, f'{ins_prompts[i_img]:03d}' + '.jpg')
pil_images[i_img].save(save_path)
# cal clip score
images = torch.stack([preprocess(img) for img in pil_images])
texts = tokenizer(prompts)
with torch.cuda.amp.autocast():
image_features = model.encode_image(images.to(device))
text_features = model.encode_text(texts.to(device))
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
s = (image_features * text_features).sum(dim=-1)
sims.append(s)
sims = torch.cat(sims)
del pipeline
del model, tokenizer
torch.cuda.empty_cache()
return sims
@torch.no_grad()
def score_batch_v1_maxQueryMatching(i, args, batch, model, noise_scheduler, encoder_hidden_states_uncond, return_unet_feat='all'):
"""
Takes a batch of images and captions and returns a score for each image-caption pair.
"""
diffqformer, vae, text_encoder, tokenizer = model
imgs, texts = batch[0], batch[1]
_, imgs_resize = imgs[0], imgs[1]
batchsize = imgs_resize[0].shape[0]
dtype, device = encoder_hidden_states_uncond.dtype, encoder_hidden_states_uncond.device
scores = []
fix_timestep = args.fix_timestep if args.fix_timestep is not None else 500
timesteps = torch.full((batchsize,), fix_timestep, device=device)
timesteps = timesteps.long()
for txt_idx, text in enumerate(texts):
noise = torch.randn((batchsize, 4, 64, 64), device=device, dtype=dtype)
text_ids = tokenizer(list(text), max_length=tokenizer.model_max_length, padding="max_length",
truncation=True, return_tensors="pt").input_ids
encoder_hidden_states = text_encoder(text_ids.to(device))
txt = F.normalize(encoder_hidden_states.pooler_output, dim=-1) # (bs, dim)
txt = txt.unsqueeze(1)
for img_idx, resized_img in enumerate(imgs_resize):
if len(resized_img.shape) == 3:
resized_img = resized_img.unsqueeze(0)
latents = vae.encode(resized_img.to(device, dtype=dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
q_emb, _ = diffqformer(noisy_latents, timesteps, encoder_hidden_states[0], only_matching=True, return_unet_feat=return_unet_feat) # shape = (layer, bs, n_query, dim)
img = F.normalize(q_emb[0, :, :args.num_queries_matching, :], dim=-1) # (bs, n_query_m, dim)
s = (img * txt).sum(dim=-1) # (bs, n_query4m)
s, _ = s.max(1)
scores.append(s)
scores = torch.stack(scores).permute(1, 0) if batchsize > 1 else torch.stack(scores).unsqueeze(0) # (bs, 2)
return scores
def eval_acc(args, val_dataloader, val_dataloader2, models, noise_scheduler, encoder_hidden_states_uncond, score_batch_func):
metrics = []
max_more_than_onces = 0
progress_bar_val = tqdm(enumerate(val_dataloader), total=len(val_dataloader))
for k, batch in progress_bar_val:
# measure time for the following line
scores = score_batch_func(k, args, batch, models, noise_scheduler, encoder_hidden_states_uncond[[0], ...])
acc, max_more_than_once = evaluate_scores('mscoco_val', scores, batch)
metrics += acc
acc = sum(metrics) / len(metrics)
max_more_than_onces += max_more_than_once
tqdm_logs = {'MSCOCO Val Accuracy Txt': f'{acc:.3f}',
'Max more than once': f'{max_more_than_onces}'}
progress_bar_val.set_postfix(**tqdm_logs)
txt_acc = acc
txt_max_more_than_onces = max_more_than_onces
metrics = []
max_more_than_onces = 0
progress_bar_val2 = tqdm(enumerate(val_dataloader2), total=len(val_dataloader2))
for k, batch in progress_bar_val2:
# measure time for the following line
scores = score_batch_func(k, args, batch, models, noise_scheduler, encoder_hidden_states_uncond[[0], ...])
acc, max_more_than_once = evaluate_scores('mscoco_val', scores, batch)
metrics += acc
acc = sum(metrics) / len(metrics)
max_more_than_onces += max_more_than_once
tqdm_logs = {'MSCOCO Val Accuracy Img': f'{acc:.3f}',
'Max more than once': f'{max_more_than_onces}'}
progress_bar_val2.set_postfix(**tqdm_logs)
img_acc = acc
img_max_more_than_onces = max_more_than_onces
return txt_acc, img_acc, txt_max_more_than_onces, img_max_more_than_onces
@torch.no_grad()
def eval_rec(args, models, criterion, val_tuples, weight_dict, device, dtype, return_res=False):
def build_evaluator_list(base_ds, dataset_name):
"""Helper function to build the list of evaluators for a given dataset"""
iou_types = ["bbox"]
evaluator_list = []
if "refexp" in dataset_name or "refcoco" in dataset_name:
evaluator_list.append(RefExpEvaluator(base_ds, ("bbox")))
return evaluator_list
def evaluate(
models,
criterion: Optional[torch.nn.Module],
contrastive_criterion: Optional[torch.nn.Module],
qa_criterion: Optional[torch.nn.Module],
postprocessors: Dict[str, torch.nn.Module],
weight_dict: Dict[str, float],
data_loader,
evaluator_list,
device: torch.device,
dtype,
args,
):
model, vae, noise_scheduler, tokenizer, text_encoder = models
model.eval()
if criterion is not None:
criterion.eval()
metric_logger = MetricLogger(delimiter=" ")
header = "Test:"
pbar = tqdm(total=len(data_loader), disable=not dist.is_main_process())
for batch_dict in metric_logger.log_every(data_loader, int(len(data_loader) / 5), header, dist.is_main_process()):
samples = batch_dict["samples"].to(device)
positive_map = batch_dict["positive_map"].to(device) if "positive_map" in batch_dict else None
targets = batch_dict["targets"]
answers = {k: v.to(device) for k, v in batch_dict["answers"].items()} if "answers" in batch_dict else None
captions = [t["caption"] for t in targets]
targets = targets_to(targets, device)
memory_cache = None
if args.masks:
outputs = model(samples, captions)
else:
imgs, mask = samples.decompose()
noisy_latents, timesteps, noise, _ = get_noisy_latents(args, imgs, vae, noise_scheduler, dtype, is_training=False)
text_for_object = [t["caption"] for t in targets]
text_for_object_ids = tokenizer(text_for_object, max_length=tokenizer.model_max_length, padding="max_length",
truncation=True, return_tensors="pt").input_ids
encoder_hidden_states = text_encoder(text_for_object_ids.to(device))[0]
outputs = model(noisy_latents, timesteps, encoder_hidden_states, text_for_object, return_unet_feat=args.unet_feature)
loss_dict = {}
if criterion is not None:
loss_dict.update(criterion(outputs, targets, positive_map))
if contrastive_criterion is not None:
assert memory_cache is not None
contrastive_loss = contrastive_criterion(memory_cache["text_pooled_op"], memory_cache["img_pooled_op"])
loss_dict["contrastive_loss"] = contrastive_loss
if qa_criterion is not None:
answer_losses = qa_criterion(outputs, answers)
loss_dict.update(answer_losses)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = dist.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict}
loss_dict_reduced_unscaled = {f"{k}_unscaled": v for k, v in loss_dict_reduced.items()}
metric_logger.update(
loss=sum(loss_dict_reduced_scaled.values()),
**loss_dict_reduced_scaled,
**loss_dict_reduced_unscaled,
)
res = None
if not args.no_detection:
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocessors["bbox"](outputs, orig_target_sizes)
if "segm" in postprocessors.keys():
target_sizes = torch.stack([t["size"] for t in targets], dim=0)
results = postprocessors["segm"](results, outputs, orig_target_sizes, target_sizes)
flickr_res = [] if "flickr_bbox" in postprocessors.keys() else None
if "flickr_bbox" in postprocessors.keys():
image_ids = [t["original_img_id"] for t in targets]
sentence_ids = [t["sentence_id"] for t in targets]
items_per_batch_element = [t["nb_eval"] for t in targets]
positive_map_eval = batch_dict["positive_map_eval"].to(device)
flickr_results = postprocessors["flickr_bbox"](
outputs, orig_target_sizes, positive_map_eval, items_per_batch_element
)
assert len(flickr_results) == len(image_ids) == len(sentence_ids)
for im_id, sent_id, output in zip(image_ids, sentence_ids, flickr_results):
flickr_res.append({"image_id": im_id, "sentence_id": sent_id, "boxes": output})
phrasecut_res = None
if "phrasecut" in postprocessors.keys():
phrasecut_res = postprocessors["phrasecut"](results)
assert len(targets) == len(phrasecut_res)
for i in range(len(targets)):
phrasecut_res[i]["original_id"] = targets[i]["original_id"]
phrasecut_res[i]["task_id"] = targets[i]["task_id"]
res = {target["image_id"].item(): output for target, output in zip(targets, results)}
for evaluator in evaluator_list:
evaluator.update(res)
pbar.update(1)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
if dist.is_main_process():
print("Averaged stats:", metric_logger)
for evaluator in evaluator_list:
evaluator.synchronize_between_processes()
refexp_res = None
flickr_res = None
phrasecut_res = None
for evaluator in evaluator_list:
if isinstance(evaluator, CocoEvaluator):
evaluator.accumulate()
evaluator.summarize()
elif isinstance(evaluator, (RefExpEvaluator)):
refexp_res = evaluator.summarize()
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
for evaluator in evaluator_list:
if isinstance(evaluator, CocoEvaluator):
if "bbox" in postprocessors.keys():
stats["coco_eval_bbox"] = evaluator.coco_eval["bbox"].stats.tolist()
if "segm" in postprocessors.keys():
stats["coco_eval_masks"] = evaluator.coco_eval["segm"].stats.tolist()
if refexp_res is not None:
stats.update(refexp_res)
if flickr_res is not None:
stats["flickr"] = flickr_res
if phrasecut_res is not None:
stats["phrasecut"] = phrasecut_res
return stats, res
# start evaluation
test_stats = {}
for i, item in enumerate(val_tuples):
evaluator_list = build_evaluator_list(item.base_ds, item.dataset_name)
item = item._replace(evaluator_list=evaluator_list)
postprocessors = build_postprocessors(args, item.dataset_name)
if dist.is_main_process():
print(f"Evaluating {item.dataset_name}")
curr_test_stats, res = evaluate(
models=models,
criterion=criterion,
contrastive_criterion=None,
qa_criterion=None,
postprocessors=postprocessors,
weight_dict=weight_dict,
data_loader=item.dataloader,
evaluator_list=item.evaluator_list,
device=device,
dtype=dtype,
args=args,
)
test_stats.update({item.dataset_name + "_" + k: v for k, v in curr_test_stats.items()})
test_stats.update({item.dataset_name + "_" + item.split: curr_test_stats.get(item.dataset_name, None)})
if return_res:
return test_stats, res
return test_stats
def load_sd_models(args):
from my_diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
noise_scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
)
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
)
return noise_scheduler, tokenizer, text_encoder, vae, unet