-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
255 lines (204 loc) · 9.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import argparse
import os
import time
import warnings
import torch
import torch.nn as nn
import torchvision.utils as vutils
from torch.autograd import Variable
from torch.cuda.amp import GradScaler, autocast
from torch.utils.tensorboard import SummaryWriter
from dataset import get_dataloaders
from utils import (Logger, get_model, mixup_criterion, mixup_data, random_seed, save_checkpoint, smooth_one_hot,
cross_entropy)
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description='USTC Computer Vision Final Project')
parser.add_argument('--arch', default="ResNet18", type=str)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--scheduler', default="reduce", type=str, help='[reduce, cos]')
parser.add_argument('--lr', default=0.1, type=float)
parser.add_argument('--momentum', default=0.9, type=float)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--label_smooth', default=True, type=eval)
parser.add_argument('--label_smooth_value', default=0.1, type=float)
parser.add_argument('--mixup', default=True, type=eval)
parser.add_argument('--mixup_alpha', default=1.0, type=float)
parser.add_argument('--Ncrop', default=True, type=eval)
parser.add_argument('--data_path', default='datasets/fer2013/fer2013.csv', type=str)
parser.add_argument('--results', default='./results', type=str)
parser.add_argument('--save_freq', default=10, type=int)
parser.add_argument('--resume', default=0, type=int)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--name', default='official', type=str)
best_acc = 0
def main():
global best_acc
args = parser.parse_args()
if random_seed is not None:
random_seed(args.seed)
args_path = str(args.arch) + '_epoch' + str(args.epochs) + '_bs' + str(args.batch_size) + '_lr' + str(
args.lr) + '_momentum' + str(args.momentum) + '_wd' + str(args.weight_decay) + '_seed' + str(
args.seed) + '_smooth' + str(args.label_smooth) + '_mixup' + str(args.mixup) + '_scheduler' + str(
args.scheduler) + '_' + str(args.name)
checkpoint_path = os.path.join(
args.results, args.name, args_path, 'checkpoints')
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
writer = SummaryWriter(os.path.join(
args.results, args.name, args_path, 'tensorboard_logs'))
logger = Logger(os.path.join(args.results,
args.name, args_path, 'output.log'))
logger.info(args)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
logger.info(device)
logger.info('Load dataset ...')
train_loader, val_loader, test_loader = get_dataloaders(
path=args.data_path,
bs=args.batch_size, augment=True)
logger.info('Start load model %s ...', args.arch)
model = get_model(args.arch)
print(model)
model = model.to(device)
# amp
scaler = GradScaler()
if args.label_smooth:
loss_fn = cross_entropy
else:
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(
), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True)
if args.scheduler == 'cos':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=args.epochs)
elif args.scheduler == 'reduce':
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='max', factor=0.75, patience=5, verbose=True)
if args.resume > 0:
logger.info('Resume from epoch %d', (args.resume))
state_dict = torch.load(os.path.join(
checkpoint_path, 'checkpoint_' + str(args.resume) + '.tar'))
model.load_state_dict(state_dict['model_state_dict'])
optimizer.load_state_dict(state_dict['opt_state_dict'])
logger.info('Start traning.')
logger.info(
"Epoch \t Time \t Train Loss \t Train ACC \t Val Loss \t Val ACC")
for epoch in range(1, args.epochs + 1):
start_t = time.time()
train_loss, train_acc = train(
model, train_loader, loss_fn, optimizer, epoch, device, scaler, writer, args)
val_loss, val_acc = evaluate(model, val_loader, device, args)
if args.scheduler == 'cos':
scheduler.step()
elif args.scheduler == 'reduce':
scheduler.step(val_acc)
writer.add_scalar("Train/Loss", train_loss.item(), epoch)
writer.add_scalar("Train/Accuracy", train_acc, epoch)
writer.add_scalar("Valid/Loss", val_loss.item(), epoch)
writer.add_scalar("Valid/Accuracy", val_acc, epoch)
writer.add_scalars("Loss", {"Train": train_loss.item()}, epoch)
writer.add_scalars("Accuracy", {"Train": train_acc}, epoch)
writer.add_scalars("Loss", {"Valid": val_loss.item()}, epoch)
writer.add_scalars("Accuracy", {"Valid": val_acc}, epoch)
epoch_time = time.time() - start_t
logger.info("%d\t %.4f \t %.4f \t %.4f \t %.4f \t %.4f", epoch, epoch_time, train_loss, train_acc, val_loss,
val_acc)
is_best = val_acc > best_acc
best_acc = max(val_acc, best_acc)
writer.add_scalar("Valid/Best Accuracy", best_acc, epoch)
save_checkpoint({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'opt_state_dict': optimizer.state_dict(),
'best_acc': best_acc,
}, epoch, is_best, save_path=checkpoint_path, save_freq=args.save_freq)
logger.info("Best val ACC %.4f", best_acc)
writer.close()
def train(model, train_loader, loss_fn, optimizer, epoch, device, scaler, writer, args):
model.train()
count = 0
correct = 0
train_loss = 0
for i, data in enumerate(train_loader):
images, labels = data
images, labels = images.to(device), labels.to(device)
org_images, org_labels = images.clone(), labels.clone()
with autocast():
if args.Ncrop:
bs, ncrops, c, h, w = images.shape
images = images.view(-1, c, h, w)
labels = torch.repeat_interleave(labels, repeats=ncrops, dim=0)
if args.mixup:
images, labels_a, labels_b, lam = mixup_data(
images, labels, args.mixup_alpha)
images, labels_a, labels_b = map(
Variable, (images, labels_a, labels_b))
if epoch == 1:
img_grid = vutils.make_grid(
images, nrow=10, normalize=True, scale_each=True)
writer.add_image("Augemented image", img_grid, i)
outputs = model(images)
if args.label_smooth:
if args.mixup:
# mixup + label smooth
soft_labels_a = smooth_one_hot(
labels_a, classes=7, smoothing=args.label_smooth_value)
soft_labels_b = smooth_one_hot(
labels_b, classes=7, smoothing=args.label_smooth_value)
loss = mixup_criterion(
loss_fn, outputs, soft_labels_a, soft_labels_b, lam)
else:
# label smoorth
soft_labels = smooth_one_hot(
labels, classes=7, smoothing=args.label_smooth_value)
loss = loss_fn(outputs, soft_labels)
else:
if args.mixup:
# mixup
loss = mixup_criterion(
loss_fn, outputs, labels_a, labels_b, lam)
else:
# normal CE
loss = loss_fn(outputs, labels)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
train_loss += loss
# Calculate training accuracy
if args.Ncrop:
bs, ncrops, c, h, w = org_images.shape
org_images = org_images.view(-1, c, h, w)
org_labels = torch.repeat_interleave(org_labels, repeats=ncrops, dim=0)
_, preds = torch.max(model(org_images), 1)
correct += torch.sum(preds == org_labels.data).item()
count += labels.shape[0]
return train_loss / count, correct / count
def evaluate(model, val_loader, device, args):
model.eval()
count = 0
correct = 0
val_loss = 0
with torch.no_grad():
for i, data in enumerate(val_loader):
images, labels = data
images, labels = images.to(device), labels.to(device)
if args.Ncrop:
# fuse crops and batchsize
bs, ncrops, c, h, w = images.shape
images = images.view(-1, c, h, w)
# forward
outputs = model(images)
# combine results across the crops
outputs = outputs.view(bs, ncrops, -1)
outputs = torch.sum(outputs, dim=1) / ncrops
else:
outputs = model(images)
loss = nn.CrossEntropyLoss()(outputs, labels)
val_loss += loss
_, preds = torch.max(outputs, 1)
correct += torch.sum(preds == labels.data).item()
count += labels.shape[0]
return val_loss / count, correct / count
if __name__ == '__main__':
main()