forked from khoroshevskyi/Annotation-of-biological-data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_file_on_wikidata.py
188 lines (154 loc) · 6.97 KB
/
find_file_on_wikidata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import time
from find_single_row_on_wikidata import FindWikiPage
import re
import multiprocessing
import pprint
import json
class ReadWrite(object):
def __init__(self, data_instances=None, api_search_quantity=20):
self.return_values = []
self.data_instances = data_instances
self.api_search_quantity = api_search_quantity
def open_file(self, file_in):
with open(file_in, 'r') as file_in:
lines = []
for line in file_in:
values = re.split(''',(?=(?:[^'"]|'[^']*'|"[^"]*")*$)''', line)
values[-1] = values[-1].strip()
for value_nb in range(len(values)):
values[value_nb] = values[value_nb].replace('"', '')
lines.append(values)
return lines
def write_file(self, file_out, data):
with open(file_out, 'w+') as the_file:
pass
wiki = 'https://www.wikidata.org/wiki/'
with open(file_out, 'a') as the_file:
for d in data:
dk = []
for each_d in range(len(d)):
if d[each_d] != '':
dk.append(wiki + d[each_d])
else:
dk.append(d[each_d])
the_file.write(f'{dk[0]},{dk[1]},{dk[2]},{dk[3]},{dk[4]}\n')
def get_instances_of_raw_data(self, file_in, quantity, with_instance=True):
raw_data = self.open_file(file_in)[0:quantity]
new_list = []
for rawd in raw_data:
find_wiki = FindWikiPage(api_search_quantity=self.api_search_quantity)
find_wiki.search(rawd)
# print("Searching: ", rawd)
ids_with_instances = find_wiki.get_list_of_possible_answers(with_instances=with_instance)
# print("Output: ")
# pprint.pprint(ids_with_instances)
for found in ids_with_instances:
new_list.append(found["instances"])
value_counter = self.count_most_popular(new_list)
self.print_in_percent(value_counter)
def count_most_popular(self, list_to_count):
value_counter = [{} for k in range(len(list_to_count[0]))]
for one_found in list_to_count:
for col_number in range(len(one_found)):
try:
value_counter[col_number][one_found[col_number]] += 1
except KeyError:
value_counter[col_number][one_found[col_number]] = 1
return value_counter
def print_in_percent(self, value_counter):
numb = 0
for val in value_counter:
numb += 1
print(f"### numb: {numb}")
s = sum(val.values())
for k, v in val.items():
pct = v * 100.0 / s
print(f"# {k} --> {round(pct, 2)}%")
def main_normal(self, file_in, file_out, quantity):
"""Main Function"""
start = time.time()
file = self.open_file(file_in)[0:quantity]
print(file)
output_list = []
number = 0
find_wiki = FindWikiPage(self.data_instances, api_search_quantity=self.api_search_quantity)
for data in file:
number += 1
print(f"\n ----- Row number {number} is searching")
id_found = find_wiki.search_and_get(data)
output_list.append(id_found)
self.write_file(file_out, output_list)
end = time.time() - start
m, s = divmod(end, 60)
print("Time spent: {} min {} sec.".format(int(m), s))
def for_multiprocessing(self, dict_to_find):
find_wiki = FindWikiPage(self.data_instances, api_search_quantity=self.api_search_quantity)
print(f"\n ----- Row number {dict_to_find['number']} is searching")
found = {'number': dict_to_find['number'],
'list': find_wiki.search_and_get(raw_data=dict_to_find['list'])}
return found
def main_multiproc(self, file_in, file_out, quantity, proc_n):
"""Main Function"""
start = time.time()
file = self.open_file(file_in)[0:quantity]
print(file)
number = -1
new_data_list = []
for data in file:
number += 1
new_data_list.append({'number': number,
'list': data})
pool = multiprocessing.Pool(proc_n)
result = pool.map(self.for_multiprocessing, new_data_list)
pool.close()
pprint.pprint(result)
result1 = []
for res in result:
result1.append(res['list'])
self.write_file(file_out, result1)
end = time.time() - start
m, s = divmod(end, 60)
print("Time spent: {} min {} sec.".format(int(m), s))
def main():
config = json.load(open("config.json"))
if config["data_instances"] == "None":
config["data_instances"] = None
readd = ReadWrite(data_instances=config["data_instances"],
api_search_quantity=config["api_search_quantity"])
if config["classify_entities"] == "True":
if config["classify_entities_method"] == 1:
from entity_classification import EntityClassification
classif = EntityClassification()
new_instances = classif.get_entity_classif(input_data=config["file_in"],
nrows=config["row_number_to_check"])
if config["search_after_classification"] == "True":
readd = ReadWrite(data_instances=new_instances ,
api_search_quantity=config["api_search_quantity"])
readd.main_multiproc(config["file_in"],
config["file_out"],
config["row_number_to_check"],
proc_n=config["multiprocessing_number"])
else:
readd.get_instances_of_raw_data(file_in=config["file_in"],
quantity=config["row_number_to_check"],
with_instance=True)
else:
if "multiprocessing_number" == 1:
readd.main_normal(config["file_in"], config["file_out"], config["row_number_to_check"])
else:
if config["multiprocessing_number"] > multiprocessing.cpu_count():
config["multiprocessing_number"] = multiprocessing.cpu_count()
readd.main_multiproc(config["file_in"],
config["file_out"],
config["row_number_to_check"],
proc_n=config["multiprocessing_number"])
if __name__ == "__main__":
main()
# data_instance = ['Q7187', 'Q8054', 'Q2996394', 'Q14860489', 'Q5058355']
#
# readdd = ReadWrite(data_instances=data_instance, api_search_quantity=30)
#
# readdd.main_normal("Data\\Input\\input_data1.csv", "Data\\new.csv", 10)
# readdd.main_multiproc("Data\\Input\\input_data1.csv", "Data\\new.csv", 300)
#
# readdd.get_instances_of_raw_data("Data\\Input\\input_data1.csv", 10)