-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscore.py
45 lines (40 loc) · 1.73 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from vigra.learning import RandomForest
import numpy as np
import sys
if len(sys.argv) < 3 or sys.argv[2] != "eigentexture":
clf = RandomForest('../challenge.h5', '/classifier')
else:
clf = RandomForest('../challenge.h5', '/etclassifier')
import tiffcvt
from extract_features import extract_features, blur_image, extract_eigenfeatures
if len(sys.argv) < 2 or sys.argv[1] == "train":
labels_name = "%s_train_labels"
labels_shape = tiffcvt.train_volume.shape
img = tiffcvt.h5_file["ordinal_train_volume"][:,:,:]
else:
labels_name = "%s_test_labels"
labels_shape = tiffcvt.test_volume.shape
img = tiffcvt.h5_file["ordinal_test_volume"][:,:,:]
if len(sys.argv) < 3 or sys.argv[2] != "eigentexture":
extract_fn = extract_features
labels_name = labels_name % "predicted"
else:
components = tiffcvt.h5_file["components"][:,:]
extract_fn = lambda img, bimg, indices:\
extract_eigenfeatures(img, bimg, components, indices)
labels_name = labels_name % "eigenpredicted"
predicted = tiffcvt.h5_file.require_dataset(labels_name,
labels_shape,
np.float32,
chunks=(64,64,1))
bimg = blur_image(img)
for i in range(0, img.shape[0], 64):
for j in range(0, img.shape[1], 64):
for k in range(img.shape[2]):
coords = np.mgrid[i:(i+64), j:(j+64),k:(k+1)].reshape(3, 64*64).transpose()
features = extract_fn(img, bimg, coords)
score = clf.predictProbabilities(features)[:,1]
score.shape = (64,64)
predicted[i:(i+64),j:(j+64),k] = score
print "Finished block %d, %d, %d" % (i, j, k)
tiffcvt.h5_file.close()