-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
73 lines (60 loc) · 2.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import warnings
import random
import numpy as np
import pandas as pd
from transformers import LineByLineTextDataset, DataCollatorForLanguageModeling
from transformers import Trainer, TrainingArguments, AutoModelForCausalLM, AutoTokenizer
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]='1,2'
warnings.filterwarnings('ignore')
warnings.simplefilter(action='ignore', category=FutureWarning)
def load_dataset(train_path,test_path,tokenizer):
train_dataset = LineByLineTextDataset(
tokenizer=tokenizer,
file_path=train_path,
block_size=64*3)
test_dataset = LineByLineTextDataset(
tokenizer=tokenizer,
file_path=test_path,
block_size=64*3)
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=False)
return train_dataset,test_dataset,data_collator
## Load the pretrained pLM -- RITA's weights and tokenizer.
RITA_directory = "./../RITA/RITA_m"
model = AutoModelForCausalLM.from_pretrained(RITA_directory, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(RITA_directory)
special_tokens_dict = {'pad_token': '[PAD]'}
tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
## Train TCRGen-0 or TCRGen-k based on your different data formulations.
train_path = 'data/original/training_5_shot_samples_seed_42.txt'
test_path = 'data/original/testing_5_shot_samples_seed_42.txt'
train_dataset, test_dataset, data_collator = load_dataset(train_path, test_path, tokenizer)
random.shuffle(train_dataset.examples)
training_args = TrainingArguments(
output_dir="./models",
overwrite_output_dir=True,
num_train_epochs=1,
per_device_train_batch_size=8,
per_device_eval_batch_size=12,
eval_steps = 20,
logging_steps = 20,
save_steps=200,
# warmup_steps=10,
learning_rate=2e-5, # Decreased the learning rate
prediction_loss_only=False, # Display both prediction loss and other metrics
evaluation_strategy="steps", # Perform evaluation every eval_steps
save_strategy='steps',
logging_strategy="steps",
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=test_dataset,
)
trainer.train()
trainer.save_model()