-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlayers.py
332 lines (263 loc) · 11.6 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import logging
import torch
import math
import copy
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from dgl.nn.pytorch import HeteroEmbedding
import numpy as np
from utils_az_books import json_load
from typing import Optional
logger = logging.getLogger(__name__)
class Embeddings(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.num_dict = {
"item_id_u_tower": config.num_items,
"user_feats": config.num_user_feats,
"item_feats": config.num_item_feats
}
self.embedding = HeteroEmbedding(
num_embeddings=self.num_dict,
embedding_dim=config.embed_size
)
self.embedding.reset_parameters()
def forward(self, input_ids: dict[str, torch.Tensor]) -> dict:
embeds = self.embedding(input_ids)
return embeds
class Squash(nn.Module):
def forward(self, x):
mag_sq = torch.sum(x**2, dim=-1, keepdim=True)
mag = torch.sqrt(mag_sq)
x = (mag_sq / (1.0 + mag_sq)) * (x / mag)
return x
class CapsuleLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.S = nn.Linear(config.embed_size, config.embed_size, bias=False)
self.B = nn.Parameter(torch.empty(self.config.num_interest, 30), requires_grad=False)
self.squash = Squash()
self.mlp = nn.Sequential(
nn.Linear(config.embed_size, config.embed_size * 2),
nn.ReLU(),
nn.Linear(config.embed_size * 2, config.embed_size)
)
nn.init.normal_(self.B, mean=0.0, std=1.0)
def forward(self, hist_embed, hist_mask):
bs = hist_embed.shape[0]
B = self.B.detach()
B = torch.tile(B, (bs, 1, 1))
hist_embed = self.S(hist_embed)
hist_mask = hist_mask.unsqueeze(1).tile(1, self.config.num_interest, 1)
drop = (torch.ones_like(hist_mask) * -(1 << 31)).type(torch.float32)
for _ in range(self.config.iters):
B_masked= torch.where(hist_mask.bool(), B, drop)
W = torch.softmax(B_masked, dim=1)
caps = torch.matmul(W, hist_embed)
caps = self.squash(caps)
B += torch.matmul(caps, torch.transpose(hist_embed, 1, 2))
caps = self.mlp(caps)
caps = caps / (torch.norm(caps, dim=-1, keepdim=True) + 1e-9)
return caps
class MultiHeadAttention(nn.Module):
"""
Multi-head Self-attention layers, a attention score dropout layer is introduced.
Args:
input_tensor (torch.Tensor): the input of the multi-head self-attention layer
attention_mask (torch.Tensor): the attention mask for input tensor
Returns:
hidden_states (torch.Tensor): the output of the multi-head self-attention layer
"""
def __init__(
self,
n_heads,
hidden_size,
hidden_dropout_prob,
attn_dropout_prob,
layer_norm_eps,
):
super(MultiHeadAttention, self).__init__()
if hidden_size % n_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (hidden_size, n_heads)
)
self.num_attention_heads = n_heads
self.attention_head_size = int(hidden_size / n_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_attention_head_size = math.sqrt(self.attention_head_size)
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
self.softmax = nn.Softmax(dim=-1)
self.attn_dropout = nn.Dropout(attn_dropout_prob)
self.dense = nn.Linear(hidden_size, hidden_size)
self.LayerNorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
self.out_dropout = nn.Dropout(hidden_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
x = x.view(*new_x_shape)
return x
def forward(self, input_tensor, attention_mask):
mixed_query_layer = self.query(input_tensor)
mixed_key_layer = self.key(input_tensor)
mixed_value_layer = self.value(input_tensor)
query_layer = self.transpose_for_scores(mixed_query_layer).permute(0, 2, 1, 3)
key_layer = self.transpose_for_scores(mixed_key_layer).permute(0, 2, 3, 1)
value_layer = self.transpose_for_scores(mixed_value_layer).permute(0, 2, 1, 3)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer)
attention_scores = attention_scores / self.sqrt_attention_head_size
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
# [batch_size heads seq_len seq_len] scores
# [batch_size 1 1 seq_len]
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = self.softmax(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.attn_dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
hidden_states = self.dense(context_layer)
hidden_states = self.out_dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class FeedForward(nn.Module):
"""
Point-wise feed-forward layer is implemented by two dense layers.
Args:
input_tensor (torch.Tensor): the input of the point-wise feed-forward layer
Returns:
hidden_states (torch.Tensor): the output of the point-wise feed-forward layer
"""
def __init__(
self, hidden_size, inner_size, hidden_dropout_prob, hidden_act, layer_norm_eps
):
super(FeedForward, self).__init__()
self.dense_1 = nn.Linear(hidden_size, inner_size)
self.intermediate_act_fn = self.get_hidden_act(hidden_act)
self.dense_2 = nn.Linear(inner_size, hidden_size)
self.LayerNorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
self.dropout = nn.Dropout(hidden_dropout_prob)
def get_hidden_act(self, act):
ACT2FN = {
"gelu": self.gelu,
"relu": torch.relu_,
"swish": self.swish,
"tanh": torch.tanh,
"sigmoid": torch.sigmoid,
}
return ACT2FN[act]
def gelu(self, x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results)::
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def swish(self, x):
return x * torch.sigmoid(x)
def forward(self, input_tensor):
hidden_states = self.dense_1(input_tensor)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dense_2(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class TransformerLayer(nn.Module):
"""
One transformer layer consists of a multi-head self-attention layer and a point-wise feed-forward layer.
Args:
hidden_states (torch.Tensor): the input of the multi-head self-attention sublayer
attention_mask (torch.Tensor): the attention mask for the multi-head self-attention sublayer
Returns:
feedforward_output (torch.Tensor): The output of the point-wise feed-forward sublayer,
is the output of the transformer layer.
"""
def __init__(
self,
n_heads,
hidden_size,
intermediate_size,
hidden_dropout_prob,
attn_dropout_prob,
hidden_act,
layer_norm_eps,
):
super(TransformerLayer, self).__init__()
self.multi_head_attention = MultiHeadAttention(
n_heads, hidden_size, hidden_dropout_prob, attn_dropout_prob, layer_norm_eps
)
self.feed_forward = FeedForward(
hidden_size,
intermediate_size,
hidden_dropout_prob,
hidden_act,
layer_norm_eps,
)
def forward(self, hidden_states, attention_mask):
attention_output = self.multi_head_attention(hidden_states, attention_mask)
feedforward_output = self.feed_forward(attention_output)
return feedforward_output
class TransformerEncoder(nn.Module):
r"""One TransformerEncoder consists of several TransformerLayers.
Args:
n_layers(num): num of transformer layers in transformer encoder. Default: 2
n_heads(num): num of attention heads for multi-head attention layer. Default: 2
hidden_size(num): the input and output hidden size. Default: 64
inner_size(num): the dimensionality in feed-forward layer. Default: 256
hidden_dropout_prob(float): probability of an element to be zeroed. Default: 0.5
attn_dropout_prob(float): probability of an attention score to be zeroed. Default: 0.5
hidden_act(str): activation function in feed-forward layer. Default: 'gelu'
candidates: 'gelu', 'relu', 'swish', 'tanh', 'sigmoid'
layer_norm_eps(float): a value added to the denominator for numerical stability. Default: 1e-12
"""
def __init__(
self,
n_layers=2,
n_heads=2,
hidden_size=64,
inner_size=256,
hidden_dropout_prob=0.1,
attn_dropout_prob=0.1,
hidden_act="gelu",
layer_norm_eps=1e-12,
):
super(TransformerEncoder, self).__init__()
layer = TransformerLayer(
n_heads,
hidden_size,
inner_size,
hidden_dropout_prob,
attn_dropout_prob,
hidden_act,
layer_norm_eps,
)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(n_layers)])
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
"""
Args:
hidden_states (torch.Tensor): the input of the TransformerEncoder
attention_mask (torch.Tensor): the attention mask for the input hidden_states
output_all_encoded_layers (Bool): whether output all transformer layers' output
Returns:
all_encoder_layers (list): if output_all_encoded_layers is True, return a list consists of all transformer
layers' output, otherwise return a list only consists of the output of last transformer layer.
"""
all_encoder_layers = []
for layer_module in self.layer:
hidden_states = layer_module(hidden_states, attention_mask)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
return all_encoder_layers