-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset_az_books.py
537 lines (428 loc) · 22 KB
/
dataset_az_books.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import json
import logging
import h5py
import os
import numpy as np
from tqdm import trange
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset
import dgl
from dgl.data.utils import load_graphs, save_graphs
from dgl.sampling import sample_neighbors
from utils_az_books import json_dump, json_load
import re
logger = logging.getLogger(__name__)
class MatchDataset:
def __init__(self, args):
self.args = args
self.split_names = ["train", "valid", "test"]
self.load_data()
def load_data(self):
meta_data = json.load(open(os.path.join(self.args.data_dir, "match-meta.json"), "r"))
self.user_fields = meta_data["user_fields"]
self.item_fields = meta_data["item_fields"]
self.user_feat_count = meta_data["user_feat_count"]
self.item_feat_count = meta_data["item_feat_count"]
self.user_feat_offset = meta_data["user_feat_offset"]
self.item_feat_offset = meta_data["item_feat_offset"]
self.item_feats_table = torch.tensor(meta_data["item_feats_table"])
self.feature_dict = meta_data["feature_dict"]
self.item_to_users = meta_data["item_to_users"]
self.num_user_feats = sum(self.user_feat_count)
self.num_item_feats = sum(self.item_feat_count)
self.num_items = self.item_feat_count[0]
self.num_users = self.user_feat_count[0]
self.num_item_fields = len(self.item_fields)
self.num_user_fields = len(self.user_fields) + 1 # hist
if self.args.model_name.lower() == "mind":
self.num_user_fields += self.args.num_interest - 1
user_offset = np.array(self.user_feat_offset).reshape(1, len(self.user_fields))
item_offset = np.array(self.item_feat_offset).reshape(1, len(self.item_fields))
with h5py.File(os.path.join(self.args.data_dir, f"match.h5"), "r") as f:
self.user_data = {split: f[f"{split} user data"][:] + user_offset for split in self.split_names}
self.item_data = {split: f[f"{split} item data"][:] + item_offset for split in self.split_names}
self.hist_ids = {split: f[f"{split} history ID"][:] for split in self.split_names}
self.hist_mask = {split: f[f"{split} history mask"][:] for split in self.split_names}
# Quant idx as additional fields
if self.args.plus_quant_idx:
self.num_user_fields += self.args.num_quantizers
self.num_item_fields += self.args.num_quantizers
# User quant idx
u_quant_idx = np.load(f"outputs_quant/az-books/user/indices_cbNum3_cbSize300_pad.npy")
# u_codebooks = np.load(f"outputs_quant/user/codebooks_{self.args.num_quantizers}.npy")
# u_codebook_num, u_codebook_size, _ = u_codebooks.shape
u_codebook_num, u_codebook_size, _ = (3, 301, 32)
u_quant_idx += np.arange(u_codebook_num) * u_codebook_size + self.num_user_feats
self.num_user_feats += u_codebook_num * u_codebook_size
# Item quant idx
i_quant_idx = np.load(f"outputs_quant/az-books/item/indices_cbNum3_cbSize512_pad.npy")
# i_codebooks = np.load(f"outputs_quant/item/codebooks_{self.args.num_quantizers}.npy")
# i_codebook_num, i_codebook_size, _ = i_codebooks.shape
i_codebook_num, i_codebook_size, _ = (3, 513, 32)
i_quant_idx += np.arange(i_codebook_num) * i_codebook_size + self.num_item_feats
self.num_item_feats += i_codebook_num * i_codebook_size
user_ids = {split: self.user_data[split][:, 0] for split in self.split_names}
self.user_data = {split: np.concatenate([self.user_data[split], u_quant_idx[user_ids[split]]], axis=1) for split in self.split_names}
self.item_feats_table = torch.cat([self.item_feats_table, torch.tensor(i_quant_idx)], dim=1)
logger.info(f"Quant idx prepared.")
if self.args.plus_llm_embed:
self.num_user_fields += 1
self.num_item_fields += 1
u_embed = np.load("outputs_llm/az-books/vicuna_user_reordered.npy")
i_embed = np.load("outputs_llm/az-books/vicuna_item_reordered.npy")
u_embed = torch.tensor(u_embed).to(torch.float32)
i_embed = torch.tensor(i_embed).to(torch.float32)
self.llm_embed_dim = u_embed.shape[1]
self.llm_embeds = {"user": u_embed, "item": i_embed}
logger.info(f"LLM embed prepared.")
if self.args.plus_on_hist and self.args.plus_llm_embed:
self.num_user_fields += 1
if self.args.plus_on_hist and self.args.plus_quant_idx:
self.num_user_fields += self.args.num_quantizers
if self.args.plus_gnn_embed:
assert self.args.idx_type in ["random", "LSH", "HC", "quant"], f"Unsupported idx type: {self.args.idx_type}"
self.num_user_fields += 1 if not self.args.not_on_user else 0
self.num_item_fields += 1 if not self.args.not_on_item else 0
idx_dir = f"outputs_idx/ml-1m/{self.args.idx_type}"
if self.args.idx_type == "quant":
# User quant idx
u_quant_idx = np.load(f"outputs_quant/az-books/user/indices_cbNum3_cbSize300_pad.npy")
# u_codebooks = np.load(f"outputs_quant/user/codebooks_{self.args.num_quantizers}{cold_postfix}.npy")
# u_codebook_num, u_codebook_size, _ = u_codebooks.shape
u_codebook_num, u_codebook_size, _ = (3, 301, 32)
u_quant_idx += np.arange(u_codebook_num) * u_codebook_size
u_codebook_used = u_codebook_num if self.args.num_codebook_used == -1 else self.args.num_codebook_used
self.u_code_num = u_codebook_used * u_codebook_size
self.u_quant_idx = u_quant_idx[:, :u_codebook_used]
# Item quant idx
i_quant_idx = np.load(f"outputs_quant/az-books/item/indices_cbNum3_cbSize512_pad.npy")
# i_codebooks = np.load(f"outputs_quant/item/codebooks_{self.args.num_quantizers}.npy")
# i_codebook_num, i_codebook_size, _ = i_codebooks.shape
i_codebook_num, i_codebook_size, _ = (3, 513, 32)
i_quant_idx += np.arange(i_codebook_num) * i_codebook_size
i_codebook_used = i_codebook_num if self.args.num_codebook_used == -1 else self.args.num_codebook_used
self.i_code_num = i_codebook_used * i_codebook_size
self.i_quant_idx = i_quant_idx[:, :i_codebook_used]
elif self.args.idx_type in ["random", "LSH"]:
u_idx = np.load(os.path.join(idx_dir, "u_idx.npy"))
i_idx = np.load(os.path.join(idx_dir, "i_idx.npy"))
self.i_code_num = 256 * 3
self.u_code_num = 300 * 3
self.u_quant_idx = u_idx + np.arange(3) * 300
self.i_quant_idx = i_idx + np.arange(3) * 256
elif self.args.idx_type == "HC":
u_idx = np.load(os.path.join(idx_dir, "u_idx.npy"))
i_idx = np.load(os.path.join(idx_dir, "i_idx.npy"))
self.i_code_num = 10 * 3
self.u_code_num = 10 * 3
self.u_quant_idx = u_idx + np.arange(3) * 10
self.i_quant_idx = i_idx + np.arange(3) * 10
logger.info(f"{self.args.idx_type.capitalize()} idx prepared.")
def get_splited_dataset(self, split):
assert split in self.split_names, f"Unsupported split name: {split}"
if self.args.plus_gnn_embed:
return GraphDataset(
split,
self.args,
self.user_data[split],
self.item_data[split][:, 0],
self.hist_ids[split],
self.hist_mask[split],
self.num_items,
self.args.num_neg_items,
self.u_quant_idx,
self.i_quant_idx,
self.u_code_num,
self.i_code_num,
self.item_to_users
)
else:
return BaseDataset(
split,
self.args,
self.user_data[split],
self.item_data[split][:, 0],
self.hist_ids[split],
self.hist_mask[split],
self.num_items,
self.args.num_neg_items,
)
class BaseDataset(Dataset):
def __init__(self, split, args, user_data, pos_item_ids, hist_ids, hist_mask, num_items, num_neg_items):
super().__init__()
self.split = split
self.args = args
self.user_data = user_data
self.pos_item_ids = pos_item_ids
self.hist_ids = hist_ids
self.hist_mask = hist_mask
self.num_items = num_items
self.num_neg_items = num_neg_items
def __len__(self):
return len(self.user_data)
def __getitem__(self, idx):
return self.user_data[idx], self.hist_ids[idx], self.hist_mask[idx], self.pos_item_ids[idx], self.gen_neg_items(idx)
def gen_neg_items(self, idx):
pos_item_id = self.pos_item_ids[idx]
neg_item_ids = []
while len(neg_item_ids) < self.num_neg_items:
neg_item_id = np.random.randint(0, self.num_items)
if neg_item_id != pos_item_id and neg_item_id not in neg_item_ids:
neg_item_ids.append(neg_item_id)
return np.array(neg_item_ids)
class GraphDataset(BaseDataset):
def __init__(self, split, args, user_data, pos_item_ids, hist_ids, hist_mask, num_items, num_neg_items,
u_quant_idx, i_quant_idx, u_code_num, i_code_num, item_to_users):
super().__init__(split, args, user_data, pos_item_ids, hist_ids, hist_mask, num_items, num_neg_items)
self.u_quant_idx = u_quant_idx
self.i_quant_idx = i_quant_idx
self.u_code_num = u_code_num
self.i_code_num = i_code_num
self.item_to_users = item_to_users
self.u_code_neighbors = [[] for _ in range(self.u_code_num+1)]
self.i_code_neighbors = [[] for _ in range(self.i_code_num)]
for uid, quant_idx in enumerate(self.u_quant_idx):
for idx in quant_idx:
self.u_code_neighbors[idx].append(uid)
for iid, quant_idx in enumerate(self.i_quant_idx):
for idx in quant_idx:
self.i_code_neighbors[idx].append(iid)
self.prepare_i_graphs()
def prepare_i_graphs(self):
np.random.seed(42)
self.visible_u_code_neighbors = [np.random.choice(i, min(len(i), self.args.degree), replace=False) for i in self.u_code_neighbors]
self.visible_i_code_neighbors = [np.random.choice(i, min(len(i), self.args.degree), replace=False) for i in self.i_code_neighbors]
if self.split == "train":
self.i_graphs = [self.construct_i_graph(iid) for iid in trange(self.num_items, desc="Preparing item graphs: ")]
def __getitem__(self, idx):
uid = self.user_data[idx, 0]
pos_id = self.pos_item_ids[idx]
neg_ids = self.gen_neg_items(idx)
if self.split == "train":
i_graph = dgl.batch([self.remove_u(self.i_graphs[pos_id], uid)] + [self.i_graphs[neg_id] for neg_id in neg_ids])
else:
return self.user_data[idx], self.hist_ids[idx], self.hist_mask[idx], \
pos_id, neg_ids, self.construct_u_graph(idx)
return self.user_data[idx], self.hist_ids[idx], self.hist_mask[idx], \
pos_id, neg_ids, self.construct_u_graph(idx), i_graph
def construct_u_graph(self, idx):
uid = self.user_data[idx, 0]
# remap user id
u_dict = {uid: 0}
u_quant_idx = self.u_quant_idx[uid]
u_neighbors = [self.visible_u_code_neighbors[i] for i in u_quant_idx]
for neighbors in u_neighbors:
for n in neighbors:
if n not in u_dict:
u_dict[n] = len(u_dict)
u_dict_reverse = {v: k for k, v in u_dict.items()}
src_u2s = [u_dict[n] for neighbors in u_neighbors for n in neighbors]
dst_u2s = np.arange(len(u_quant_idx)).repeat([len(neighbors) for neighbors in u_neighbors])
if self.args.remove_ui:
edges_dict = {
("u_sem", "denotes", "user"): (
torch.arange(len(u_quant_idx)),
torch.tensor([0]*len(u_quant_idx)),
),
("user", "shares", "u_sem"): (
torch.tensor(src_u2s),
torch.tensor(dst_u2s)
)
}
g = dgl.heterograph(edges_dict)
g.nodes["user"].data["id"] = torch.tensor([u_dict_reverse[i] for i in range(len(u_dict_reverse))])
g.nodes["user"].data["mask"] = F.one_hot(torch.tensor(0), len(u_dict)).to(torch.bool)
g.nodes["u_sem"].data["id"] = torch.tensor(u_quant_idx)
return g
hist_ids = self.hist_ids[idx]
hist_mask = self.hist_mask[idx].astype(bool)
hist_ids = hist_ids[hist_mask]
hist_ids = list(set(hist_ids))
hist_ids = np.random.choice(hist_ids, min(self.args.degree, len(hist_ids)), replace=False)
# remap item quant idx
i_quant_idx = self.i_quant_idx[hist_ids] # (N, 3)
quant_dict = dict()
for quant_idx in i_quant_idx:
for idx in quant_idx:
if idx not in quant_dict:
quant_dict[idx] = len(quant_dict)
quant_dict_reverse = {v: k for k, v in quant_dict.items()}
src_s2i = [quant_dict[n] for n in i_quant_idx.reshape(-1)]
dst_s2i = np.arange(len(hist_ids)).repeat(i_quant_idx.shape[1])
# remap item id
i_neighbors = [self.visible_i_code_neighbors[i] for i in i_quant_idx.reshape(-1)]
i_dict = {hist_id: i for i, hist_id in enumerate(hist_ids)}
for neighbors in i_neighbors:
for n in neighbors:
if n not in i_dict:
i_dict[n] = len(i_dict)
i_dict_reverse = {v: k for k, v in i_dict.items()}
src_i2s = [i_dict[i] for quant_idx in quant_dict for i in self.visible_i_code_neighbors[quant_idx]]
dst_i2s = np.concatenate([[remap_idx]*len(self.visible_i_code_neighbors[quant_idx]) for quant_idx, remap_idx in quant_dict.items()])
edges_dict = {
("item", "clicked_by", "user"): (
torch.arange(len(hist_ids)),
torch.tensor([0]*len(hist_ids))
),
("u_sem", "denotes", "user"): (
torch.arange(len(u_quant_idx)),
torch.tensor([0]*len(u_quant_idx)),
),
("user", "shares", "u_sem"): (
torch.tensor(src_u2s),
torch.tensor(dst_u2s)
),
("i_sem", "denotes", "item"): (
torch.tensor(src_s2i),
torch.tensor(dst_s2i)
),
("item", "shares", "i_sem"): (
torch.tensor(src_i2s),
torch.tensor(dst_i2s)
)
}
g = dgl.heterograph(edges_dict)
g.nodes["user"].data["id"] = torch.tensor([u_dict_reverse[i] for i in range(len(u_dict_reverse))])
g.nodes["user"].data["mask"] = F.one_hot(torch.tensor(0), len(u_dict)).to(torch.bool)
g.nodes["item"].data["id"] = torch.tensor([i_dict_reverse[i] for i in range(len(i_dict_reverse))])
g.nodes["u_sem"].data["id"] = torch.tensor(u_quant_idx)
g.nodes["i_sem"].data["id"] = torch.tensor([quant_dict_reverse[i] for i in range(len(quant_dict_reverse))])
return g
def construct_i_graph(self, iid):
# remap item id
i_dict = {iid: 0}
i_quant_idx = self.i_quant_idx[iid]
i_neighbors = [self.visible_i_code_neighbors[i] for i in i_quant_idx]
for neighbors in i_neighbors:
for n in neighbors:
if n not in i_dict:
i_dict[n] = len(i_dict)
i_dict_reverse = {v: k for k, v in i_dict.items()}
src_i2s = [i_dict[n] for neighbors in i_neighbors for n in neighbors]
dst_i2s = np.arange(len(i_quant_idx)).repeat([len(neighbors) for neighbors in i_neighbors])
if self.args.remove_iu:
edges_dict = {
("i_sem", "denotes", "item"): (
torch.arange(len(i_quant_idx)),
torch.tensor([0]*len(i_quant_idx)),
),
("item", "shares", "i_sem"): (
torch.tensor(src_i2s),
torch.tensor(dst_i2s)
),
}
g = dgl.heterograph(edges_dict)
g.nodes["item"].data["id"] = torch.tensor([i_dict_reverse[i] for i in range(len(i_dict_reverse))])
g.nodes["item"].data["mask"] = F.one_hot(torch.tensor(0), len(i_dict)).to(torch.bool)
g.nodes["i_sem"].data["id"] = torch.tensor(i_quant_idx)
return g
hist_users = np.array(self.item_to_users[iid])
hist_users = np.random.choice(hist_users, min(self.args.degree, len(hist_users)), replace=False)
# For cold-start items, plus dummpy nodes
if len(hist_users) == 0:
edges_dict = {
("i_sem", "denotes", "item"): (
torch.arange(len(i_quant_idx)),
torch.tensor([0]*len(i_quant_idx)),
),
("item", "shares", "i_sem"): (
torch.tensor(src_i2s),
torch.tensor(dst_i2s)
),
("user", "clicked", "item"): (
torch.tensor([0]),
torch.tensor([0])
),
("u_sem", "denotes", "user"): (
torch.tensor([0]),
torch.tensor([0])
),
("user", "shares", "u_sem"): (
torch.tensor([0]),
torch.tensor([0])
)
}
g = dgl.heterograph(edges_dict)
g.nodes["item"].data["id"] = torch.tensor([i_dict_reverse[i] for i in range(len(i_dict_reverse))])
g.nodes["item"].data["mask"] = F.one_hot(torch.tensor(0), len(i_dict)).to(torch.bool)
g.nodes["i_sem"].data["id"] = torch.tensor(i_quant_idx)
g.nodes["u_sem"].data["id"] = torch.tensor([self.u_code_num])
g.nodes["user"].data["id"] = torch.tensor([len(self.u_quant_idx)])
return g
# remap user quant idx
u_quant_idx = self.u_quant_idx[hist_users]
quant_dict = dict()
for quant_idx in u_quant_idx:
for idx in quant_idx:
if idx not in quant_dict:
quant_dict[idx] = len(quant_dict)
quant_dict_reverse = {v: k for k, v in quant_dict.items()}
src_s2u = [quant_dict[n] for n in u_quant_idx.reshape(-1)]
dst_s2u = np.arange(len(hist_users)).repeat(u_quant_idx.shape[1])
# remap user id
u_neighbors = [self.visible_u_code_neighbors[i] for i in u_quant_idx.reshape(-1)]
u_dict = {uid: i for i, uid in enumerate(hist_users)}
for neighbors in u_neighbors:
for n in neighbors:
if n not in u_dict:
u_dict[n] = len(u_dict)
u_dict_reverse = {v: k for k, v in u_dict.items()}
src_u2s = [u_dict[i] for quant_idx in quant_dict for i in self.visible_u_code_neighbors[quant_idx]]
dst_u2s = np.concatenate([[remap_idx]*len(self.visible_u_code_neighbors[quant_idx]) for quant_idx, remap_idx in quant_dict.items()])
edges_dict = {
("user", "clicked", "item"): (
torch.arange(len(hist_users)),
torch.tensor([0]*len(hist_users))
),
("i_sem", "denotes", "item"): (
torch.arange(len(i_quant_idx)),
torch.tensor([0]*len(i_quant_idx)),
),
("item", "shares", "i_sem"): (
torch.tensor(src_i2s),
torch.tensor(dst_i2s)
),
("u_sem", "denotes", "user"): (
torch.tensor(src_s2u),
torch.tensor(dst_s2u)
),
("user", "shares", "u_sem"): (
torch.tensor(src_u2s),
torch.tensor(dst_u2s).to(torch.int64)
)
}
g = dgl.heterograph(edges_dict)
g.nodes["item"].data["id"] = torch.tensor([i_dict_reverse[i] for i in range(len(i_dict_reverse))])
g.nodes["item"].data["mask"] = F.one_hot(torch.tensor(0), len(i_dict)).to(torch.bool)
g.nodes["user"].data["id"] = torch.tensor([u_dict_reverse[i] for i in range(len(u_dict_reverse))])
g.nodes["i_sem"].data["id"] = torch.tensor(i_quant_idx)
g.nodes["u_sem"].data["id"] = torch.tensor([quant_dict_reverse[i] for i in range(len(quant_dict_reverse))])
return g
def remove_u(self, g, uid):
if self.args.remove_iu or self.split != "train":
return g
u_mapped_id = torch.where(g.nodes["user"].data["id"] == uid)[0]
if len(u_mapped_id) == 0:
return g
etype = ("user", "clicked", "item")
if g.has_edges_between(u_mapped_id, torch.tensor([0]), etype=etype):
eid = g.edge_ids(u_mapped_id, torch.tensor([0]), etype=etype)
return dgl.remove_edges(g, eid, etype=etype)
else:
return g
def data_collator_fn(features):
batch = {
"user_feats": torch.tensor(np.array([f[0] for f in features])).long(),
"hist_ids": torch.tensor(np.array([f[1] for f in features])).long(),
"hist_mask": torch.tensor(np.array([f[2] for f in features])).long(),
"pos_item_ids": torch.tensor(np.array([f[3] for f in features])).long(),
"neg_item_ids": torch.tensor(np.array([f[4] for f in features])).long(),
}
if len(features[0]) == 6:
batch["u_graphs"] = dgl.batch([f[5] for f in features])
if len(features[0]) == 7:
batch["u_graphs"] = dgl.batch([f[5] for f in features])
batch["i_graphs"] = dgl.batch([f[6] for f in features])
return batch