-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathdetect.py
451 lines (364 loc) · 15.4 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
from multiprocessing import Process, Manager, freeze_support
from datetime import datetime as date
from loguru import logger
from glob import glob
import torch.cuda
import argparse
import cv2
import os
import numpy as np
from edgeyolo.detect import Detector, TRTDetector, draw
from copy import deepcopy
def get_args():
parser = argparse.ArgumentParser("EdgeYOLO Detect parser")
parser.add_argument("-w", "--weights", type=str, default="edgeyolo_coco.pth", help="weight file")
parser.add_argument("-c", "--conf-thres", type=float, default=0.25, help="confidence threshold")
parser.add_argument("-n", "--nms-thres", type=float, default=0.55, help="nms threshold")
parser.add_argument("--mp", action="store_true", help="use multi-process to accelerate total speed")
parser.add_argument("--fp16", action="store_true", help="fp16")
parser.add_argument("--no-fuse", action="store_true", help="do not fuse model")
parser.add_argument("--input-size", type=int, nargs="+", default=[640, 640], help="input size: [height, width]")
parser.add_argument("-s", "--source", type=str, default=None, help="video source/image dir/rosbag")
parser.add_argument("--trt", action="store_true", help="is trt model")
parser.add_argument("--legacy", action="store_true", help="if img /= 255 while training, add this command.")
parser.add_argument("--use-decoder", action="store_true", help="support original yolox model v0.2.0")
parser.add_argument("--batch", type=int, default=1, help="batch size")
parser.add_argument("--no-label", action="store_true", help="do not draw label")
parser.add_argument("--save-dir", type=str, default="./output/detect/imgs/", help="image result save dir")
parser.add_argument("--fps", type=int, default=99999, help="max fps")
parser.add_argument("--topic", type=str, default=None, help="ros or rosbag image topic")
return parser.parse_args()
class ROSBase:
def __init__(self):
import numpy as np
self.np = np
def _compressedImage2CVMat(self, msg):
return cv2.imdecode(self.np.frombuffer(msg.data, dtype=self.np.uint8), cv2.IMREAD_COLOR)
def _Image2CVMat(self, msg):
return self.np.reshape(self.np.fromstring(msg.data, dtype="bgr8"), [msg.height, msg.width, 3])
class ROSBagCapture(ROSBase):
def __init__(self, bagfile: str, topic: str):
super(ROSBagCapture, self).__init__()
from rosbag import Bag
self.bag = Bag(bagfile)
self.len = self.bag.get_message_count(topic)
self.iter = self.bag.read_messages(topic)
self.idx = 0
self.first = True
self.compressed = True
def isOpened(self):
return self.idx < self.len - 1
def read(self):
if self.isOpened():
topic, msg, timestamp = next(self.iter)
self.idx += 1
if self.first:
self.first = False
self.compressed = hasattr(msg, "format")
img = (self._compressedImage2CVMat if self.compressed else self._Image2CVMat)(msg)
return img is not None, img
else:
return False, None
class ROSCapture(ROSBase):
def __init__(self, topic):
super().__init__()
import rospy
import rostopic
from sensor_msgs.msg import CompressedImage, Image
img_type, *_ = rostopic.get_topic_type(topic)
self.img = None
assert img_type.lower().endswith("image")
self.compressed = img_type.lower().endswith("compressedimage")
self.updated = False
rospy.init_node('edgeyolo_detector', anonymous=True)
rospy.Subscriber(topic, CompressedImage if self.compressed else Image, self.__imageReceivedCallback)
def __imageReceivedCallback(self, msg):
self.img = (self._compressedImage2CVMat if self.compressed else self._Image2CVMat)(msg)
self.updated = True
def isOpened(self):
return True
def read(self):
while not self.updated:
pass
self.updated = False
return True, self.img
def setup_source(args):
if isinstance(args.source, str) and os.path.isdir(args.source):
class DirCapture:
def __init__(self, dir_name):
self.imgs = []
for img_type in ["jpg", "png", "jpeg", "bmp", "webp"]:
self.imgs += sorted(glob(os.path.join(dir_name, f"*.{img_type}")))
def isOpened(self):
return bool(len(self.imgs))
def read(self):
print(self.imgs[0])
now_img = cv2.imread(self.imgs[0])
self.imgs = self.imgs[1:]
return now_img is not None, now_img
source = DirCapture(args.source)
delay = 0
else:
if args.source is not None and args.source.lower().endswith(".bag"):
cmd_check_topic = f"rosbag info {args.source}"
if args.topic is None:
str_show = ""
topics = []
count = 0
for line in os.popen(cmd_check_topic).read().split("topics:")[-1].split("\n"):
if len(line):
contents = line.split()
if contents[-1] not in ["sensor_msgs/CompressedImage", "sensor_msgs/Image"]:
continue
# print(line)
count += 1
topics.append(contents[0])
str_show += f"{count}. " + topics[-1] + "\n"
logger.error(f"choose one topic from the following topics:\n{str_show[:-1]}")
idx = -1
while True:
try:
idx = int(input(f"input 1~{count} as your choise and then press enter(-1 to exit):\n>>> "))
if idx == -1:
break
if idx > count or idx < 1:
assert False
args.topic = topics[idx-1]
break
except:
print("wrong input!")
pass
# return
if idx == -1:
exit(0)
source = ROSBagCapture(args.source, args.topic)
delay = 0
elif args.source is None:
if args.topic is None:
str_show = ""
cmd_check_topic = "rostopic list"
count = 0
topics = []
for line in os.popen(cmd_check_topic).read().split("\n"):
if len(line):
if os.popen(f"rostopic type {line}").read().split("\n")[0] in ["sensor_msgs/CompressedImage", "sensor_msgs/Image"]:
count += 1
topics.append(line.split()[0])
str_show += f"{count}. " + topics[-1] + "\n"
logger.error(f"choose one topic from the following topics:\n{str_show[:-1]}")
while True:
try:
idx = int(input(f"input 1~{count} as your choise and then press enter(-1 to exit):\n>>> "))
if idx == -1:
break
if idx > count or idx < 1:
assert False
args.topic = topics[idx-1]
break
except:
print("wrong input!")
pass
# return
if idx == -1:
exit(0)
source = ROSCapture(args.topic)
delay = 1
else:
source = cv2.VideoCapture(int(args.source) if args.source.isdigit() else args.source)
delay = 1
return source, delay
def detect_single(args):
import time
exist_save_dir = os.path.isdir(args.save_dir)
# detector setup
detector = TRTDetector if args.trt else Detector
detect = detector(
weight_file=args.weights,
conf_thres=args.conf_thres,
nms_thres=args.nms_thres,
input_size=args.input_size,
fuse=not args.no_fuse,
fp16=args.fp16,
use_decoder=args.use_decoder
)
if args.trt:
args.batch = detect.batch_size
# source loader setup
source, delay = setup_source(args)
all_dt = []
dts_len = 300 // args.batch
success = True
# start inference
count = 0
t_start = time.time()
while source.isOpened() and success:
frames = []
for _ in range(args.batch):
success, frame = source.read()
if not success:
if not len(frames):
cv2.destroyAllWindows()
break
else:
while len(frames) < args.batch:
frames.append(frames[-1])
else:
frames.append(frame)
if not len(frames):
break
results = detect(frames, args.legacy)
dt = detect.dt
all_dt.append(dt)
if len(all_dt) > dts_len:
all_dt = all_dt[-dts_len:]
print(f"\r{dt * 1000 / args.batch:.1f}ms "
f"average:{sum(all_dt) / len(all_dt) / args.batch * 1000:.1f}ms", end=" ")
key = -1
# [print(result.shape) for result in results]
imgs = draw(deepcopy(frames), results, detect.class_names, 2, draw_label=not args.no_label)
# print([im.shape for im in frames])
for i, img in enumerate(imgs):
# print(img.shape)
cv2.imshow("EdgeYOLO result", img)
count += 1
key = cv2.waitKey(delay)
if key in [ord("q"), 27]:
break
elif key == ord(" "):
delay = 1 - delay
elif key == ord("s"):
if not exist_save_dir:
os.makedirs(args.save_dir, exist_ok=True)
exist_save_dir = True
fn = f"{str(date.now()).split('.')[0].replace(':', '').replace('-', '').replace(' ', '')}"
file_name = fn + ".jpg"
# ori_img_name = fn + "_ori.jpg"
# output_file = fn + ".npy"
cv2.imwrite(os.path.join(args.save_dir, file_name), img)
# cv2.imwrite(os.path.join(args.save_dir, ori_img_name), frames[i])
# np.save(os.path.join(args.save_dir, output_file), detect.net_outputs)
logger.info(f"image saved to {file_name}.")
if key in [ord("q"), 27]:
# cv2.destroyAllWindows()
break
print()
cv2.destroyAllWindows()
logger.info(f"\ntotal frame: {count}, total average latency: {(time.time() - t_start) * 1000 / count - 1}ms")
def inference(msg, results, args):
from edgeyolo.detect import Detector, TRTDetector
detector = TRTDetector if args.trt else Detector
detect = detector(
weight_file=args.weights,
conf_thres=args.conf_thres,
nms_thres=args.nms_thres,
input_size=args.input_size,
fuse=not args.no_fuse,
fp16=args.fp16,
use_decoder=args.use_decoder
)
if args.trt:
args.batch = detect.batch_size
# source loader setup
source, delay = setup_source(args)
msg["class_names"] = detect.class_names
msg["delay"] = delay
success = True
while source.isOpened() and success and not msg["end"]:
frames = []
for _ in range(args.batch):
if msg["end"]:
frames = []
break
success, frame = source.read()
if not success:
if not len(frames):
cv2.destroyAllWindows()
break
else:
while len(frames) < args.batch:
frames.append(frames[-1])
else:
frames.append(frame)
if not len(frames):
break
results.put((frames, [r.cpu() for r in detect(frames, args.legacy)]))
msg["end"] = True
torch.cuda.empty_cache()
msg["end_count"] += 1
def draw_imgs(msg, results, all_imgs, args):
from edgeyolo.detect import draw
while "class_names" not in msg:
pass
class_names = msg["class_names"]
while not msg["end"] or not results.empty():
# print(len(msg["results"]))
if not results.empty():
for img in draw(*results.get(), class_names, 2, draw_label=not args.no_label):
all_imgs.put(img)
# print(all_imgs.empty())
torch.cuda.empty_cache()
msg["end_count"] += 1
def show(msg, all_imgs, args, pid):
from time import time
# import platform
while "delay" not in msg:
pass
delay = msg["delay"]
exist_save_dir = os.path.isdir(args.save_dir)
all_dt = []
t0 = time()
while not msg["end"] or not all_imgs.empty():
if not all_imgs.empty():
img = all_imgs.get()
# print(img.shape)
while time() - t0 < 1. / args.fps - 0.0004:
pass
dt = time() - t0
all_dt.append(dt)
if len(all_dt) > 300:
all_dt = all_dt[-300:]
mean_dt = sum(all_dt) / len(all_dt) * 1000
print(f"\r{dt * 1000:.1f}ms --> {1. / dt:.1f}FPS, "
f"average:{mean_dt:.1f}ms --> {1000. / mean_dt:.1f}FPS", end=" ")
t0 = time()
cv2.imshow("EdgeYOLO result", img)
key = cv2.waitKey(delay)
if key in [ord("q"), 27]:
msg["end"] = True
cv2.destroyAllWindows()
break
elif key == ord(" "):
delay = 1 - delay
elif key == ord("s"):
if not exist_save_dir:
os.makedirs(args.save_dir, exist_ok=True)
file_name = f"{str(date.now()).split('.')[0].replace(':', '').replace('-', '').replace(' ', '')}.jpg"
cv2.imwrite(os.path.join(args.save_dir, file_name), img)
logger.info(f"image saved to {file_name}.")
print()
print()
torch.cuda.empty_cache()
msg["end_count"] += 1
while not msg["end_count"] == 3:
pass
# if platform.system().lower() == "windows":
# os.system(F"taskkill /F /PID {pid}")
# else:
# os.system(f"kill -9 {pid}")
def detect_multi(args):
freeze_support()
shared_data = Manager().dict()
shared_data["end"] = False
shared_data["end_count"] = 0
results = Manager().Queue()
all_imgs = Manager().Queue()
processes = [Process(target=inference, args=(shared_data, results, args)),
Process(target=draw_imgs, args=(shared_data, results, all_imgs, args)),
Process(target=show, args=(shared_data, all_imgs, args, os.getpid()))]
[process.start() for process in processes]
torch.cuda.empty_cache()
[process.join() for process in processes]
if __name__ == '__main__':
opt = get_args()
(detect_multi if opt.mp else detect_single)(opt)
print()