-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel_search.py
361 lines (296 loc) · 13.3 KB
/
model_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch_geometric.utils import add_self_loops,remove_self_loops
# from operations import *
from op_graph_classification import *
from torch.autograd import Variable
from genotypes import NA_PRIMITIVES, LA_PRIMITIVES, POOL_PRIMITIVES, READOUT_PRIMITIVES, ACT_PRIMITIVES
# from genotypes import Genotype
from torch_geometric.nn import global_mean_pool,global_add_pool
from pooling_zoo import filter_features, filter_perm
def act_map(act):
if act == "linear":
return lambda x: x
if act == "elu":
return torch.nn.ELU
elif act == "sigmoid":
return torch.nn.Sigmoid
elif act == "tanh":
return torch.nn.Tanh
elif act == "relu":
return torch.nn.ReLU
elif act == "relu6":
return torch.nn.ReLU6
elif act == "softplus":
return torch.nn.Softplus
elif act == "leaky_relu":
return torch.nn.LeakyReLU
else:
raise Exception("wrong activate function")
class NaMixedOp(nn.Module):
def __init__(self, in_dim, out_dim, with_linear):
super(NaMixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in NA_PRIMITIVES:
op = NA_OPS[primitive](in_dim, out_dim)
self._ops.append(op)
if with_linear:
self._ops_linear = nn.ModuleList()
op_linear = torch.nn.Linear(in_dim, out_dim)
self._ops_linear.append(op_linear)
# self.act = act_map(act)
def forward(self, x, weights, edge_index, edge_weights, with_linear):
mixed_res = []
if with_linear:
for w, op, linear in zip(weights, self._ops, self._ops_linear):
mixed_res.append(w * (op(x, edge_index, edge_weight=edge_weights)+linear(x)))
# print('with linear')
else:
for w, op in zip(weights, self._ops):
mixed_res.append(w * (op(x, edge_index, edge_weight=edge_weights)))
# print('without linear')
return sum(mixed_res)
class LaMixedOp(nn.Module):
def __init__(self, hidden_size, num_layers=None):
super(LaMixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in LA_PRIMITIVES:
op = LA_OPS[primitive](hidden_size, num_layers)
self._ops.append(op)
def forward(self, x, weights):
mixed_res = []
for w, op in zip(weights, self._ops):
# mixed_res.append(w * F.relu(op(x)))
mixed_res.append(w * F.elu(op(x)))
return sum(mixed_res)
def index_to_mask(index, size):
mask = torch.zeros(size, dtype=torch.float64, device=index.device)
new_index = index.fill_(index[0]).type(torch.long)
mask[new_index] = 1.0
return mask
class PoolingMixedOp(nn.Module):
def __init__(self, hidden, ratio, num_nodes=0):
super(PoolingMixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in POOL_PRIMITIVES:
op = POOL_OPS[primitive](hidden, ratio, num_nodes)
self._ops.append(op)
def forward(self, x, edge_index, edge_weights, data, batch, mask, weights):
new_x = []
new_edge_weight = []
new_perm = []
# neither add or ewmove self_loop, so edge_index remain unchanged.
for w, op in zip(weights, self._ops):
# mixed_res.append(w * F.relu(op(x)))
x_tmp, edge_index, edge_weight_tmp, batch, perm = op(x, edge_index, edge_weights, data, batch, mask)
#print(perm.size(), w)
new_x.append(x_tmp * w)
new_edge_weight.append(w * edge_weight_tmp)
new_perm.append(w * index_to_mask(perm, x.size(0)))
#remove nodes with perm
x, edge_index, edge_weight, batch, perm = filter_perm(sum(new_x), edge_index, sum(new_edge_weight), batch, sum(new_perm), th=0.01)
return x, edge_index, edge_weight, batch, perm
class ReadoutMixedOp(nn.Module):
def __init__(self, hidden):
super(ReadoutMixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in READOUT_PRIMITIVES:
op = READOUT_OPS[primitive](hidden)
self._ops.append(op)
def forward(self, x, batch, mask, weights):
mixed_res = []
for w, op in zip(weights, self._ops):
tmp_res = w * op(x, batch, mask)
# print('readout', tmp_res.size())
mixed_res.append(tmp_res)
return sum(mixed_res)
class ActMixedOp(nn.Module):
def __init__(self):
super(ActMixedOp, self).__init__()
self._ops = nn.ModuleDict()
for primitive in ACT_PRIMITIVES:
if primitive == 'linear':
self._ops[primitive] = act_map(primitive)
else:
self._ops[primitive] = act_map(primitive)()
def forward(self, x, weights):
mixed_res = []
for i in range(len(ACT_PRIMITIVES)):
mixed_res.append(weights[i] * self._ops[ACT_PRIMITIVES[i]](x))
return sum(mixed_res)
class Network(nn.Module):
def __init__(self, criterion, in_dim, out_dim, hidden_size, num_layers=3, dropout=0.5, epsilon=0.0, args=None, with_conv_linear=False,num_nodes=0 ):
super(Network, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_nodes = num_nodes
self._criterion = criterion
self.dropout = dropout
self.epsilon = epsilon
self.with_linear = with_conv_linear
self.explore_num = 0
self.args = args
self.temp = args.temp
self._loc_mean = args.loc_mean
self._loc_std = args.loc_std
if num_layers == 1:
self.pooling_ratio = [0.1]
elif num_layers == 2:
self.pooling_ratio = [0.25, 0.25]
elif num_layers == 3:
self.pooling_ratio = [0.5, 0.5, 0.5]
elif num_layers == 4:
self.pooling_ratio = [0.6, 0.6, 0.6, 0.6]
elif num_layers == 5:
self.pooling_ratio = [0.7, 0.7, 0.7, 0.7, 0.7]
elif num_layers == 6:
self.pooling_ratio = [0.8, 0.8, 0.8, 0.8, 0.8, 0.8]
self.lin1 = nn.Linear(in_dim, hidden_size)
# node aggregator op
self.gnn_layers = nn.ModuleList()
for i in range(num_layers):
self.gnn_layers.append(NaMixedOp(hidden_size, hidden_size, self.with_linear))
#act op
self.act_ops = nn.ModuleList()
for i in range(num_layers):
self.act_ops.append(ActMixedOp())
#readoutop
self.readout_layers = nn.ModuleList()
for i in range(num_layers+1):
self.readout_layers.append(ReadoutMixedOp(hidden_size))
#pooling ops
self.pooling_layers = nn.ModuleList()
for i in range(num_layers):
self.pooling_layers.append(PoolingMixedOp(hidden_size, self.pooling_ratio[i], num_nodes=self.num_nodes))
#graph representation aggregator op
self.layer6 = LaMixedOp(hidden_size, num_layers+1)
self.lin_output = nn.Linear(hidden_size, hidden_size)
self.classifier = nn.Linear(hidden_size, out_dim)
self._initialize_alphas()
def _get_categ_mask(self, alpha):
# log_alpha = torch.log(alpha)
log_alpha = alpha
u = torch.zeros_like(log_alpha).uniform_()
softmax = torch.nn.Softmax(-1)
one_hot = softmax((log_alpha + (-((-(u.log())).log()))) / self.temp)
return one_hot
def get_one_hot_alpha(self, alpha):
one_hot_alpha = torch.zeros_like(alpha, device=alpha.device)
idx = torch.argmax(alpha, dim=-1)
for i in range(one_hot_alpha.size(0)):
one_hot_alpha[i, idx[i]] = 1.0
return one_hot_alpha
def forward(self, data, discrete=False, mode='none'):
self.args.search_act = False
with_linear = self.with_linear
x, edge_index = data.x, data.edge_index
batch = data.batch
# edge_index, _ = remove_self_loops(edge_index)
edge_index, _ = add_self_loops(edge_index, num_nodes=x.size()[0])
if self.args.model_type == 'darts':
na_alphas = F.softmax(self.log_na_alphas, dim=-1)
la_alphas = F.softmax(self.log_la_alphas, dim=-1)
pool_alphas = F.softmax(self.log_pool_alphas, dim=-1)
readout_alphas = F.softmax(self.log_readout_alphas, dim=-1)
act_alphas = F.softmax(self.log_act_alphas, dim=-1)
# print('DARTS: sampled arch in train w', self._sparse(na_alphas, act_alphas, pool_alphas, readout_alphas, la_alphas))
else:
na_alphas = self._get_categ_mask(self.log_na_alphas)
# sc_alphas = self._get_categ_mask(self.log_sc_alphas)
la_alphas = self._get_categ_mask(self.log_la_alphas)
pool_alphas = self._get_categ_mask(self.log_pool_alphas)
readout_alphas = self._get_categ_mask(self.log_readout_alphas)
act_alphas = self._get_categ_mask(self.log_act_alphas)
# print('alpha in train w:',self._arch_parameters)
# print('sampled arch in train w', self._sparse(na_alphas, act_alphas, pool_alphas, readout_alphas, la_alphas))
if mode == 'evaluate_single_path':
na_alphas = self.get_one_hot_alpha(na_alphas)
la_alphas = self.get_one_hot_alpha(la_alphas)
pool_alphas = self.get_one_hot_alpha(pool_alphas)
readout_alphas = self.get_one_hot_alpha(readout_alphas)
act_alphas = self.get_one_hot_alpha(act_alphas)
graph_representations = []
x = F.elu(self.lin1(x))
edge_weights = torch.ones(edge_index.size()[1], device=edge_index.device).float()
graph_representations.append(self.readout_layers[0](x, batch, None, readout_alphas[0]))
for i in range(self.num_layers):
x = self.gnn_layers[i](x, na_alphas[i], edge_index, edge_weights, with_linear)
#print('evaluate data {}-th gnn:'.format(i), x.size(), batch.size())
if self.args.search_act:
x = self.act_ops[i](x, act_alphas[i])
else:
x = F.elu(x)
layer_norm = nn.LayerNorm(normalized_shape=x.size(), elementwise_affine=False)
x = layer_norm(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x, edge_index, edge_weights, batch, _ = self.pooling_layers[i](x, edge_index, edge_weights, data, batch, None, pool_alphas[i])
graph_representations.append(self.readout_layers[i+1](x, batch, None, readout_alphas[i+1]))
x5 = self.layer6(graph_representations, la_alphas[0])
x5 = F.elu(self.lin_output(x5))
x5 = F.dropout(x5, p=self.dropout, training=self.training)
logits = self.classifier(x5)
return F.log_softmax(logits, dim=-1), [na_alphas, act_alphas, pool_alphas, readout_alphas, la_alphas]
def _initialize_alphas(self):
num_na_ops = len(NA_PRIMITIVES)
num_la_ops = len(LA_PRIMITIVES)
num_pool_ops = len(POOL_PRIMITIVES)
num_readout_ops = len(READOUT_PRIMITIVES)
num_act_ops = len(ACT_PRIMITIVES)
if self.args.model_type == 'darts':
self.log_na_alphas = Variable(1e-3*torch.randn(self.num_layers, num_na_ops).cuda(), requires_grad=True)
self.log_act_alphas = Variable(1e-3*torch.randn(self.num_layers, num_act_ops).cuda(), requires_grad=True)
self.log_pool_alphas = Variable(1e-3*torch.randn(self.num_layers, num_pool_ops).cuda(), requires_grad=True)
self.log_readout_alphas = Variable(1e-3*torch.randn(self.num_layers+1, num_readout_ops).cuda(), requires_grad=True)
self.log_la_alphas = Variable(1e-3*torch.randn(1, num_la_ops).cuda(), requires_grad=True)
else:
self.log_na_alphas = Variable(
torch.ones(self.num_layers, num_na_ops).normal_(self._loc_mean, self._loc_std).cuda(), requires_grad=True)
self.log_act_alphas = Variable(
torch.ones(self.num_layers, num_act_ops).normal_(self._loc_mean, self._loc_std).cuda(), requires_grad=True)
self.log_pool_alphas = Variable(
torch.ones(self.num_layers, num_pool_ops).normal_(self._loc_mean, self._loc_std).cuda(), requires_grad=True)
self.log_readout_alphas = Variable(
torch.ones(self.num_layers + 1, num_readout_ops).normal_(self._loc_mean, self._loc_std).cuda(),
requires_grad=True)
self.log_la_alphas = Variable(torch.ones(1, num_la_ops).normal_(self._loc_mean, self._loc_std).cuda(),
requires_grad=True)
self._arch_parameters = [
self.log_na_alphas,
self.log_act_alphas,
self.log_pool_alphas,
self.log_readout_alphas,
self.log_la_alphas
]
def arch_parameters(self):
return self._arch_parameters
def _sparse(self, na_weights, act_alphas, pool_alphas, readout_alphas, la_weights):
gene = []
na_indices = torch.argmax(na_weights, dim=-1)
for k in na_indices:
gene.append(NA_PRIMITIVES[k])
#sc_indices = sc_weights.argmax(dim=-1)
act_indices = torch.argmax(act_alphas,dim=-1)
for k in act_indices:
gene.append(ACT_PRIMITIVES[k])
pooling_indices = torch.argmax(pool_alphas, dim=-1)
for k in pooling_indices:
gene.append(POOL_PRIMITIVES[k])
#la_indices = la_weights.argmax(dim=-1)
readout_indices = torch.argmax(readout_alphas,dim=-1)
for k in readout_indices:
gene.append(READOUT_PRIMITIVES[k])
la_indices = torch.argmax(la_weights, dim=-1)
for k in la_indices:
gene.append(LA_PRIMITIVES[k])
return '||'.join(gene)
def genotype(self):
gene = self._sparse(F.softmax(self.log_na_alphas, dim=-1).data.cpu(),
F.softmax(self.log_act_alphas, dim=-1).data.cpu(),
F.softmax(self.log_pool_alphas, dim=-1).data.cpu(),
F.softmax(self.log_readout_alphas, dim=-1).data.cpu(),
F.softmax(self.log_la_alphas, dim=-1).data.cpu())
return gene