-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathdata.py
895 lines (790 loc) · 31.9 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
import ast
import json
import logging
import math
import os
import random
import h5py
from dataclasses import dataclass
import braceexpand
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms
import webdataset as wds
from PIL import Image
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler
from torch.utils.data.distributed import DistributedSampler
from functools import partial
from pathlib import Path
import wget
import tempfile
import copy
from contextlib import suppress
from clap_module.utils import get_tar_path_from_dataset_name, dataset_split
from clap_module.utils import load_p, load_class_label
from clap_module import tokenize as clip_tokenizer
from transformers import BertTokenizer
from transformers import RobertaTokenizer
from transformers import BartTokenizer
try:
import horovod.torch as hvd
except ImportError:
hvd = None
try:
import torchaudio
except ImportError:
torchaudio = None
bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
roberta_tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
def tokenizer(text, tmodel="roberta", max_length=77):
"""tokenizer for different models
tmodel is default to roberta as it is the best model for our task
max_length is default to 77 from the OpenAI CLIP parameters
We assume text to be a single string, but it can also be a list of strings
"""
if tmodel == "transformer":
return clip_tokenizer(text).squeeze(0)
elif tmodel == "bert":
result = bert_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=max_length,
return_tensors="pt",
)
return {k: v.squeeze(0) for k, v in result.items()}
elif tmodel == "roberta":
result = roberta_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=max_length,
return_tensors="pt",
)
return {k: v.squeeze(0) for k, v in result.items()}
elif tmodel == "bart":
result = bart_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=max_length,
return_tensors="pt",
)
return {k: v.squeeze(0) for k, v in result.items()}
# initizlied the audioset map
_AUDIOSET_MAP_PATH = os.path.join(Path(__file__).parent, "audioset_textmap.npy")
_AUDIOSET_MAP = np.load(_AUDIOSET_MAP_PATH, allow_pickle=True)
def int16_to_float32(x):
return (x / 32767.0).astype(np.float32)
def float32_to_int16(x):
x = np.clip(x, a_min=-1., a_max=1.)
return (x * 32767.).astype(np.int16)
def int16_to_float32_torch(x):
return (x / 32767.0).type(torch.float32)
def float32_to_int16_torch(x):
x = torch.clamp(x, min=-1., max=1.)
return (x * 32767.).type(torch.int16)
# For Toy Dataset
class ToyDataset(Dataset):
def __init__(self, index_path, ipc, config, eval_mode=False):
"""Toy Dataset for testing the audioset input with text labels
Parameters
----------
index_path: str
the link to the h5 file of each audio
idc: str
the link to the npy file, the number of samples in each class
config: dict
the audio cfg file
eval_model (bool): to indicate if the dataset is a testing dataset
"""
self.audio_cfg = config["audio_cfg"]
self.text_cfg = config["text_cfg"]
self.fp = h5py.File(index_path, "r")
self.ipc = np.load(ipc, allow_pickle=True)
self.total_size = len(self.fp["audio_name"])
self.classes_num = self.audio_cfg["class_num"]
self.eval_mode = eval_mode
if not eval_mode:
self.generate_queue()
else:
self.queue = []
for i in range(self.total_size):
target = self.fp["target"][i]
if np.sum(target) > 0:
self.queue.append(i)
self.total_size = len(self.queue)
logging.info("total dataset size: %d" % (self.total_size))
logging.info("class num: %d" % (self.classes_num))
def time_shifting(self, x):
frame_num = len(x)
shift_len = random.randint(0, frame_num - 1)
new_sample = np.concatenate([x[shift_len:], x[:shift_len]], axis=0)
return new_sample
def generate_queue(self):
self.queue = []
while len(self.queue) < self.total_size:
class_set = [*range(self.classes_num)]
random.shuffle(class_set)
self.queue += [
self.ipc[d][random.randint(0, len(self.ipc[d]) - 1)] for d in class_set
]
self.queue = self.queue[: self.total_size]
logging.info("queue regenerated:%s" % (self.queue[-5:]))
def crop_wav(self, x):
crop_size = self.audio_cfg["crop_size"]
crop_pos = random.randint(0, len(x) - crop_size - 1)
return x[crop_pos: crop_pos + crop_size]
def prompt_text(self, target):
events = _AUDIOSET_MAP[np.where(target > 0)]
event_text = "The sounds of " + ", ".join(events[:-1]) + " and " + events[-1]
text = tokenizer(event_text)[0]
return text
def __getitem__(self, index):
"""Load waveform, text, and target of an audio clip
Parameters
----------
index: int
the index number
Return
------
output: dict {
"hdf5_path": str,
"index_in_hdf5": int,
"audio_name": str,
"waveform": list (audio_length,),
"target": list (class_num, ),
"text": torch.tensor (context_length,)
}
the output dictionary
"""
s_index = self.queue[index]
audio_name = self.fp["audio_name"][s_index].decode()
# Hardcode here CHANGE
hdf5_path = (
self.fp["hdf5_path"][s_index]
.decode()
.replace(
"../workspace",
"/home/la/kechen/Research/ke_zsasp/workspace",
)
)
r_idx = self.fp["index_in_hdf5"][s_index]
target = self.fp["target"][s_index].astype(np.float32)
text = self.prompt_text(target)
with h5py.File(hdf5_path, "r") as f:
waveform = int16_to_float32(f["waveform"][r_idx])[
: self.audio_cfg["clip_samples"]
]
assert (
len(waveform) == self.audio_cfg["clip_samples"]
), "The sample length is not match"
# Time shift
# if (self.config.enable_time_shift) and (not self.eval_mode):
# waveform = self.time_shifting(waveform)
# # Label Enhance
# if (self.config.crop_size is not None) and (not self.eval_mode):
# waveform = self.crop_wav(waveform)
# # the label enhance rate is fixed 0.5
# if (self.config.enable_label_enhance) and (not self.eval_mode) and random.random() < 0.5:
# kidx = np.where(target)[0]
# for k in kidx:
# for add_key in self.class_map[k][1]:
# target[add_key] = 1.0
# if len(self.class_map[k][2]) > 0:
# add_key = random.choice(self.class_map[k][2])
# target[add_key] = 1.0
# missing the text input
mel_spec = get_mel(torch.from_numpy(waveform), self.audio_cfg)[None, :, :]
mel_spec = torch.cat([mel_spec, mel_spec.clone(), mel_spec.clone(), mel_spec.clone()], dim=0).cpu().numpy()
longer = random.choice([True, False])
if longer == False:
mel_spec[1:, :, :] = 0.0
data_dict = {
"hdf5_path": hdf5_path,
"index_in_hdf5": r_idx,
"audio_name": audio_name,
"waveform": waveform,
"class_label": target,
"text": text,
"longer": longer,
"mel_fusion": mel_spec
}
return data_dict
def __len__(self):
return self.total_size
@dataclass
class DataInfo:
dataloader: DataLoader
sampler: DistributedSampler
def get_dataset_size(shards, sizefilepath_=None, is_local=True):
if isinstance(shards, list):
size_list = []
for s in shards:
size_list.append(
get_dataset_size(s, sizefilepath_=sizefilepath_, is_local=is_local)[0]
)
else:
if not is_local:
for n in dataset_split.keys():
if n in shards.split("/"):
break
for s in dataset_split[n]:
if s in shards.split("/"):
break
sizefilepath_ = f"./json_files/{n}/{s}/sizes.json"
shards_list = list(braceexpand.braceexpand(shards))
dir_path = os.path.dirname(shards)
if sizefilepath_ is not None:
sizes = json.load(open(sizefilepath_, "r"))
total_size = sum(
[
int(sizes[os.path.basename(shard.replace(".tar -", ".tar"))])
for shard in shards_list
]
)
else:
sizes_filename = os.path.join(dir_path, "sizes.json")
len_filename = os.path.join(dir_path, "__len__")
if os.path.exists(sizes_filename):
sizes = json.load(open(sizes_filename, "r"))
total_size = sum(
[int(sizes[os.path.basename(shard)]) for shard in shards_list]
)
elif os.path.exists(len_filename):
# FIXME this used to be eval(open(...)) but that seemed rather unsafe
total_size = ast.literal_eval(open(len_filename, "r").read())
else:
raise Exception(
f"Cannot find sizes file for dataset {shards}. Please specify the path to the file."
)
# total_size = None # num samples undefined
# some common dataset sizes (at time of authors last download)
# cc3m-train: 2905954
# cc12m: 10968539
# LAION-400m: 407332084
num_shards = len(shards_list)
if isinstance(shards, list):
return sum(size_list), len(shards)
else:
return total_size, num_shards
def count_samples(dataloader):
os.environ["WDS_EPOCH"] = "0"
n_elements, n_batches = 0, 0
for images, texts in dataloader:
n_batches += 1
n_elements += len(images)
assert len(images) == len(texts)
return n_elements, n_batches
def log_and_continue(exn):
"""Call in an exception handler to ignore any exception, isssue a warning, and continue."""
logging.warning(f"Handling webdataset error ({repr(exn)}). Ignoring.")
return True
_SHARD_SHUFFLE_SIZE = 2000
_SHARD_SHUFFLE_INITIAL = 500
_SAMPLE_SHUFFLE_SIZE = 5000
_SAMPLE_SHUFFLE_INITIAL = 1000
def sample_prop(sizefile, inputs, proportion, is_local=True):
"""
Sample a proportion of the data.
"""
file_path_dict = {
os.path.split(inputs[i])[1]: os.path.split(inputs[i])[0]
for i in range(len(inputs))
}
sampled_filepath_dict = {}
sampled_size_dict = {}
if not is_local:
if os.path.exists("sizes.json"):
os.remove("sizes.json")
wget.download(sizefile, "sizes.json")
sizefile = "sizes.json"
with open(sizefile, "r", encoding="UTF-8") as f:
load_dict = json.load(f)
L = int(len(file_path_dict) * proportion)
subkeys = random.sample(file_path_dict.keys(), L)
for k in subkeys:
sampled_size_dict[k] = load_dict[k]
sampled_filepath_dict[k] = file_path_dict[k]
return (
sum(sampled_size_dict.values()),
L,
[os.path.join(v, k) for k, v in sampled_filepath_dict.items()],
sampled_size_dict,
)
def get_mel(audio_data, audio_cfg):
# mel shape: (n_mels, T)
mel_tf = torchaudio.transforms.MelSpectrogram(
sample_rate=audio_cfg['sample_rate'],
n_fft=audio_cfg['window_size'],
win_length=audio_cfg['window_size'],
hop_length=audio_cfg['hop_size'],
center=True,
pad_mode="reflect",
power=2.0,
norm=None,
onesided=True,
n_mels=audio_cfg['mel_bins'],
f_min=audio_cfg['fmin'],
f_max=audio_cfg['fmax']
).to(audio_data.device)
mel = mel_tf(audio_data)
# Align to librosa:
# librosa_melspec = librosa.feature.melspectrogram(
# waveform,
# sr=audio_cfg['sample_rate'],
# n_fft=audio_cfg['window_size'],
# hop_length=audio_cfg['hop_size'],
# win_length=audio_cfg['window_size'],
# center=True,
# pad_mode="reflect",
# power=2.0,
# n_mels=audio_cfg['mel_bins'],
# norm=None,
# htk=True,
# f_min=audio_cfg['fmin'],
# f_max=audio_cfg['fmax']
# )
# we use log mel spectrogram as input
mel = torchaudio.transforms.AmplitudeToDB(top_db=None)(mel)
return mel.T # (T, n_mels)
def get_audio_features(sample, audio_data, max_len, data_truncating, data_filling, audio_cfg, require_grad=False):
"""
Calculate and add audio features to sample.
Sample: a dict containing all the data of current sample.
audio_data: a tensor of shape (T) containing audio data.
max_len: the maximum length of audio data.
data_truncating: the method of truncating data.
data_filling: the method of filling data.
audio_cfg: a dict containing audio configuration. Comes from model_cfg['audio_cfg'].
require_grad: whether to require gradient for audio data.
This is useful when we want to apply gradient-based classifier-guidance.
"""
grad_fn = suppress if require_grad else torch.no_grad
with grad_fn():
if len(audio_data) > max_len:
if data_truncating == "rand_trunc":
longer = torch.tensor([True])
elif data_truncating == "fusion":
# fusion
mel = get_mel(audio_data, audio_cfg)
# split to three parts
chunk_frames = max_len // audio_cfg['hop_size'] + 1 # the +1 related to how the spectrogram is computed
total_frames = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is
# larger than max_len but smaller than max_len+hop_size.
# In this case, we just use the whole audio.
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([False])
else:
ranges = np.array_split(list(range(0, total_frames - chunk_frames + 1)), 3)
# print('total_frames-chunk_frames:', total_frames-chunk_frames,
# 'len(audio_data):', len(audio_data),
# 'chunk_frames:', chunk_frames,
# 'total_frames:', total_frames)
if len(ranges[1]) == 0:
# if the audio is too short, we just use the first chunk
ranges[1] = [0]
if len(ranges[2]) == 0:
# if the audio is too short, we just use the first chunk
ranges[2] = [0]
# randomly choose index for each part
idx_front = np.random.choice(ranges[0])
idx_middle = np.random.choice(ranges[1])
idx_back = np.random.choice(ranges[2])
# select mel
mel_chunk_front = mel[idx_front:idx_front + chunk_frames, :]
mel_chunk_middle = mel[idx_middle:idx_middle + chunk_frames, :]
mel_chunk_back = mel[idx_back:idx_back + chunk_frames, :]
# shrink the mel
mel_shrink = torchvision.transforms.Resize(size=[chunk_frames, audio_cfg['mel_bins']])(mel[None])[0]
# logging.info(f"mel_shrink.shape: {mel_shrink.shape}")
# stack
mel_fusion = torch.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([True])
else:
raise NotImplementedError(
f"data_truncating {data_truncating} not implemented"
)
# random crop to max_len (for compatibility)
overflow = len(audio_data) - max_len
idx = np.random.randint(0, overflow + 1)
audio_data = audio_data[idx: idx + max_len]
else: # padding if too short
if len(audio_data) < max_len: # do nothing if equal
if data_filling == "repeatpad":
n_repeat = int(max_len / len(audio_data))
audio_data = audio_data.repeat(n_repeat)
# audio_data = audio_data.unsqueeze(0).unsqueeze(0).unsqueeze(0)
# audio_data = F.interpolate(audio_data,size=max_len,mode="bicubic")[0,0,0]
audio_data = F.pad(
audio_data,
(0, max_len - len(audio_data)),
mode="constant",
value=0,
)
elif data_filling == "pad":
audio_data = F.pad(
audio_data,
(0, max_len - len(audio_data)),
mode="constant",
value=0,
)
elif data_filling == "repeat":
n_repeat = int(max_len / len(audio_data))
audio_data = audio_data.repeat(n_repeat + 1)[:max_len]
else:
raise NotImplementedError(
f"data_filling {data_filling} not implemented"
)
if data_truncating == 'fusion':
mel = get_mel(audio_data, audio_cfg)
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([False])
sample["longer"] = longer
sample["waveform"] = audio_data
return sample
def select_text(json_dict_raw, text_augment_selection):
# For selecting augmented text from dataset
if text_augment_selection is None or text_augment_selection == "none":
texts = json_dict_raw["text"]
elif text_augment_selection == "all":
if "text_augment_all" in json_dict_raw.keys():
texts = json_dict_raw["text_augment_all"]
else:
texts = json_dict_raw["text"]
elif text_augment_selection == "augment_only":
if "text_augment_all" in json_dict_raw.keys():
if json_dict_raw["text_augment_t5"] is None:
texts = json_dict_raw["text"]
else:
texts = json_dict_raw["text_augment_t5"]
else:
texts = json_dict_raw["text"]
else:
raise NotImplementedError(
f"text_augment_selection {text_augment_selection} not implemented"
)
return texts
def preprocess_single(
sample,
audio_ext,
text_ext,
max_len,
audio_cfg,
tmodel,
class_index_dict,
data_filling,
data_truncating,
text_augment_selection,
):
"""
Preprocess a single sample for wdsdataloader.
"""
audio_data, orig_sr = sample[audio_ext]
audio_data = int16_to_float32_torch(float32_to_int16_torch(audio_data[0]))
sample = get_audio_features(sample, audio_data, max_len, data_truncating, data_filling, audio_cfg)
del sample[audio_ext]
json_dict_raw = sample[text_ext]
texts = select_text(json_dict_raw, text_augment_selection)
sample["full_text"] = texts
if isinstance(texts, list) and isinstance(texts[0], str) and len(texts) > 1:
texts = random.choice(texts)
sample["raw_text"] = texts
sample["text"] = tokenizer(texts, tmodel=tmodel) # text shape: [num_token]
if class_index_dict is not None:
# https://stackoverflow.com/questions/48004243/how-to-share-large-read-only-dictionary-list-across-processes-in-multiprocessing
# https://stackoverflow.com/questions/45693949/storing-strings-in-a-multiprocessing-sharedctypes-array
# in case the re-written version is wrong, here is the old version:
# sample["class_label"] = np.zeros(len(class_index_dict.keys()))
# for x in json_dict_raw["tag"]:
# sample["class_label"][class_index_dict[x]] = 1
# sample["class_label"] = torch.tensor(sample["class_label"]).float()
class_labels = np.zeros(len(class_index_dict))
class_labels[np.in1d(list(class_index_dict.keys()), json_dict_raw["tag"])] = 1
sample["class_label"] = torch.tensor(class_labels).float()
del sample[text_ext]
sample["audio_name"] = sample["__key__"].split("/")[-1] + "." + audio_ext
sample["text_name"] = sample["__key__"].split("/")[-1] + "." + text_ext
sample["audio_orig_sr"] = orig_sr
return sample
def collate_fn_with_preprocess(batch,
audio_ext,
text_ext,
max_len,
audio_cfg,
args,
):
"""
Collate function for wdsdataloader.
batch: a list of dict, each dict is a sample
"""
class_index_dict = copy.deepcopy(args.class_index_dict) # To avoid deadlock in multiprocessing
data_filling = args.data_filling
data_truncating = args.data_truncating
text_augment_selection = args.text_augment_selection
tmodel = args.tmodel
# concatenate values in each dictionary. if it is a tensor, concatenate. if it is a list, extend.
data_preprocessed = []
for sample in batch:
data_preprocessed.append(
preprocess_single(sample, audio_ext, text_ext, max_len, audio_cfg, tmodel, class_index_dict, data_filling,
data_truncating, text_augment_selection))
batch_dict = {}
for k in data_preprocessed[0].keys():
if isinstance(data_preprocessed[0][k], dict): # dealwith bert tokenizer output
batch_dict[k] = {}
for kk in data_preprocessed[0][k].keys():
tmp = []
for i in range(len(data_preprocessed)):
tmp.append(data_preprocessed[i][k][kk])
batch_dict[k][kk] = torch.vstack(tmp)
elif isinstance(data_preprocessed[0][k], torch.Tensor):
batch_dict[k] = torch.stack([sample[k] for sample in data_preprocessed])
elif isinstance(data_preprocessed[0][k], np.ndarray):
batch_dict[k] = torch.tensor(np.stack([sample[k] for sample in data_preprocessed]))
else:
batch_dict[k] = [sample[k] for sample in data_preprocessed]
del data_preprocessed
return batch_dict
def get_wds_dataset(
args,
model_cfg,
is_train,
audio_ext="flac",
text_ext="json",
max_len=480000,
proportion=1.0,
sizefilepath_=None,
is_local=None,
):
"""
Get a dataset for wdsdataloader.
"""
if is_local is None and (not args.remotedata is None):
is_local = not args.remotedata
input_shards = args.train_data if is_train else args.val_data
assert input_shards is not None
if not sizefilepath_ is None:
sizefilepath = sizefilepath_
else:
sizefilepath = os.path.join(os.path.dirname(input_shards[0]), "sizes.json")
if proportion != 1.0:
num_samples, num_shards, input_shards, _ = sample_prop(
sizefilepath, input_shards, proportion, is_local=is_local
)
else:
num_samples, num_shards = get_dataset_size(
input_shards, sizefilepath_=sizefilepath_, is_local=is_local
)
if not num_samples:
if is_train:
num_samples = args.train_num_samples
if not num_samples:
raise RuntimeError(
"Currently, number of dataset samples must be specified for training dataset. "
"Please specify via `--train-num-samples` if no dataset length info present."
)
else:
num_samples = (
args.val_num_samples or 0
) # eval will just exhaust the iterator if not specified
pipeline = [wds.SimpleShardList(input_shards)]
# at this point we have an iterator over all the shards
# TODO: (yusong): add a if statement of distributed. If not, we don't need to split_by_node
if is_train or args.parallel_eval:
pipeline.extend(
[
wds.detshuffle(
bufsize=_SHARD_SHUFFLE_SIZE,
initial=_SHARD_SHUFFLE_INITIAL,
seed=args.seed,
),
wds.split_by_node,
wds.split_by_worker,
# at this point, we have an iterator over the shards assigned to each worker at each node
wds.tarfile_to_samples(handler=log_and_continue),
wds.shuffle(
bufsize=_SAMPLE_SHUFFLE_SIZE,
initial=_SAMPLE_SHUFFLE_INITIAL,
rng=random.Random(args.seed),
),
# wds.repeatedly, # FIXME determine if this is beneficial
]
)
else:
pipeline.extend(
[
wds.split_by_worker,
# at this point, we have an iterator over the shards assigned to each worker
wds.tarfile_to_samples(handler=log_and_continue),
]
)
pipeline.append(
wds.decode(wds.torch_audio),
)
pipeline.append(
wds.batched(
args.batch_size,
partial=not (is_train or args.parallel_eval),
collation_fn=partial(collate_fn_with_preprocess,
audio_ext=audio_ext,
text_ext=text_ext,
max_len=max_len,
audio_cfg=model_cfg['audio_cfg'],
args=args,
),
)
)
dataset = wds.DataPipeline(*pipeline)
if is_train or args.parallel_eval:
# (yusong): Currently parallel evaluation will be not precise as we are repeat the last few samples.
# (yusong): See comments below.
# roll over and repeat a few samples to get same number of full batches on each node
global_batch_size = args.batch_size * args.world_size
num_batches = math.ceil(num_samples / global_batch_size)
num_workers = max(1, args.workers)
num_worker_batches = math.ceil(
num_batches / num_workers
) # per dataloader worker
num_batches = num_worker_batches * num_workers
num_samples = num_batches * global_batch_size
dataset = dataset.with_epoch(
num_worker_batches
) # each worker is iterating over this
else:
# last batches are partial, eval is done on single (master) node
num_batches = math.ceil(num_samples / args.batch_size)
kwargs = {}
if args.horovod: # multi-node training on summit
kwargs["multiprocessing_context"] = "forkserver"
if is_train:
if args.prefetch_factor:
prefetch_factor = args.prefetch_factor
else:
prefetch_factor = max(2, args.batch_size // args.workers)
else:
prefetch_factor = 2
dataloader = wds.WebLoader(
dataset,
batch_size=None,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
prefetch_factor=prefetch_factor,
**kwargs
)
# FIXME not clear which approach is better, with_epoch before vs after dataloader?
# hoping to resolve via https://github.com/webdataset/webdataset/issues/169
# if is_train:
# # roll over and repeat a few samples to get same number of full batches on each node
# global_batch_size = args.batch_size * args.world_size
# num_batches = math.ceil(num_samples / global_batch_size)
# num_workers = max(1, args.workers)
# num_batches = math.ceil(num_batches / num_workers) * num_workers
# num_samples = num_batches * global_batch_size
# dataloader = dataloader.with_epoch(num_batches)
# else:
# # last batches are partial, eval is done on single (master) node
# num_batches = math.ceil(num_samples / args.batch_size)
# add meta-data to dataloader instance for convenience
dataloader.num_batches = num_batches
dataloader.num_samples = num_samples
return DataInfo(dataloader, None)
def wds_batch_list2dict(
batch,
keys=[
"__url__",
"__key__",
"waveform",
"text",
"raw_text",
"audio_name",
"text_name",
"audio_orig_sr",
],
):
"""
Return a dictionary of the batch, with keys as the names of the fields.
"""
assert len(keys) == len(
batch
), "batch must have same number of keys as keys argument"
return {keys[i]: batch[i] for i in range(len(batch))}
def get_toy_dataset(args, model_cfg, is_train):
index_path = args.train_data if is_train else args.val_data
ipc_path = args.train_ipc if is_train else args.val_ipc
assert index_path and ipc_path
eval_mode = not is_train
dataset = ToyDataset(index_path, ipc_path, model_cfg, eval_mode=eval_mode)
num_samples = len(dataset)
sampler = (
DistributedSampler(dataset, shuffle=False)
if args.distributed and is_train
else None
)
dataloader = DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
sampler=sampler,
drop_last=is_train,
)
dataloader.num_samples = num_samples
dataloader.num_batches = len(dataloader)
return DataInfo(dataloader, sampler)
def get_dataset_fn(dataset_type):
if dataset_type == "webdataset":
return get_wds_dataset
elif dataset_type == "toy":
return get_toy_dataset
else:
raise ValueError(f"Unsupported dataset type: {dataset_type}")
def get_data(args, model_cfg):
data = {}
args.class_index_dict = load_class_label(args.class_label_path)
if args.datasetinfos is None:
args.datasetinfos = ["train", "unbalanced_train", "balanced_train"]
if args.dataset_type == "webdataset":
args.train_data = get_tar_path_from_dataset_name(
args.datasetnames,
args.datasetinfos,
islocal=not args.remotedata,
proportion=args.dataset_proportion,
dataset_path=args.datasetpath,
full_dataset=args.full_train_dataset,
)
if args.full_train_dataset is None:
args.full_train_dataset = []
if args.exclude_eval_dataset is None:
args.exclude_eval_dataset = []
excluded_eval_datasets = args.full_train_dataset + args.exclude_eval_dataset
val_dataset_names = [n for n in args.datasetnames if n not in excluded_eval_datasets] \
if excluded_eval_datasets else args.datasetnames
args.val_dataset_names = val_dataset_names
args.val_data = get_tar_path_from_dataset_name(
val_dataset_names,
["valid", "test", "eval"],
islocal=not args.remotedata,
proportion=1,
dataset_path=args.datasetpath,
full_dataset=None,
)
if args.train_data:
data["train"] = get_dataset_fn(args.dataset_type)(
args, model_cfg, is_train=True
)
if args.val_data:
data["val"] = get_dataset_fn(args.dataset_type)(
args, model_cfg, is_train=False
)
return data