forked from microsoft/SymCrypt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaes-default.c
872 lines (793 loc) · 33.5 KB
/
aes-default.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
//
// aes-default.c code for AES implementation
//
// Copyright (c) Microsoft Corporation. Licensed under the MIT license.
//
// This is the interface for the default AES implementation.
// On each platform, this is the fastest AES implementation irrespective of code size.
// It uses assembler, XMM, or any other trick.
//
#include "precomp.h"
//
// Virtual table for generic functions
// This allows us to default to generic implementations for some modes without pulling in all the
// dedicated functions.
// We use this when we cannot use the optimized implementations for some reason.
//
const SYMCRYPT_BLOCKCIPHER SymCryptAesBlockCipherNoOpt = {
&SymCryptAesExpandKey,
#if SYMCRYPT_CPU_AMD64 | SYMCRYPT_CPU_X86 | SYMCRYPT_CPU_ARM
&SymCryptAesEncryptAsm,
&SymCryptAesDecryptAsm,
#else
&SymCryptAesEncryptC,
&SymCryptAesDecryptC,
#endif
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
SYMCRYPT_AES_BLOCK_SIZE,
sizeof( SYMCRYPT_AES_EXPANDED_KEY ),
};
VOID
SYMCRYPT_CALL
SymCryptAes4Sbox( _In_reads_(4) PCBYTE pIn, _Out_writes_(4) PBYTE pOut, BOOL UseSimd )
{
#if SYMCRYPT_CPU_X86 | SYMCRYPT_CPU_AMD64
if( UseSimd )
{
SymCryptAes4SboxXmm( pIn, pOut );
} else {
SymCryptAes4SboxC( pIn, pOut );
}
#elif SYMCRYPT_CPU_ARM64
if( UseSimd )
{
SymCryptAes4SboxNeon( pIn, pOut );
} else {
SymCryptAes4SboxC( pIn, pOut );
}
#else
UNREFERENCED_PARAMETER( UseSimd );
SymCryptAes4SboxC( pIn, pOut ); // never use XMM on SaveXmm arch, save/restore overhead is too large.
#endif
}
VOID
SYMCRYPT_CALL
SymCryptAesCreateDecryptionRoundKey(
_In_reads_(16) PCBYTE pEncryptionRoundKey,
_Out_writes_(16) PBYTE pDecryptionRoundKey,
BOOL UseSimd )
{
#if SYMCRYPT_CPU_X86 | SYMCRYPT_CPU_AMD64
if( UseSimd )
{
SymCryptAesCreateDecryptionRoundKeyXmm( pEncryptionRoundKey, pDecryptionRoundKey );
} else {
SymCryptAesCreateDecryptionRoundKeyC( pEncryptionRoundKey, pDecryptionRoundKey );
}
#elif SYMCRYPT_CPU_ARM64
if( UseSimd )
{
SymCryptAesCreateDecryptionRoundKeyNeon( pEncryptionRoundKey, pDecryptionRoundKey );
} else {
SymCryptAesCreateDecryptionRoundKeyC( pEncryptionRoundKey, pDecryptionRoundKey );
}
#else
UNREFERENCED_PARAMETER( UseSimd );
SymCryptAesCreateDecryptionRoundKeyC( pEncryptionRoundKey, pDecryptionRoundKey ); // never use XMM on SaveXmm arch, save/restore overhead is too large.
#endif
}
VOID
SYMCRYPT_CALL
SymCryptAesEncrypt(
_In_ PCSYMCRYPT_AES_EXPANDED_KEY pExpandedKey,
_In_reads_(SYMCRYPT_AES_BLOCK_SIZE) PCBYTE pbSrc,
_Out_writes_(SYMCRYPT_AES_BLOCK_SIZE) PBYTE pbDst )
{
#if SYMCRYPT_CPU_AMD64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) )
{
SymCryptAesEncryptXmm( pExpandedKey, pbSrc, pbDst );
} else {
SymCryptAesEncryptAsm( pExpandedKey, pbSrc, pbDst );
}
#elif SYMCRYPT_CPU_X86
SYMCRYPT_EXTENDED_SAVE_DATA SaveData;
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) &&
SymCryptSaveXmm( &SaveData ) == SYMCRYPT_NO_ERROR )
{
SymCryptAesEncryptXmm( pExpandedKey, pbSrc, pbDst );
SymCryptRestoreXmm( &SaveData );
} else {
SymCryptAesEncryptAsm( pExpandedKey, pbSrc, pbDst );
}
#elif SYMCRYPT_CPU_ARM
SymCryptAesEncryptAsm( pExpandedKey, pbSrc, pbDst );
#elif SYMCRYPT_CPU_ARM64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURE_NEON_AES ) )
{
SymCryptAesEncryptNeon( pExpandedKey, pbSrc, pbDst );
} else {
SymCryptAesEncryptC( pExpandedKey, pbSrc, pbDst );
}
#else
SymCryptAesEncryptC( pExpandedKey, pbSrc, pbDst );
#endif
}
VOID
SYMCRYPT_CALL
SymCryptAesDecrypt(
_In_ PCSYMCRYPT_AES_EXPANDED_KEY pExpandedKey,
_In_reads_(SYMCRYPT_AES_BLOCK_SIZE) PCBYTE pbSrc,
_Out_writes_(SYMCRYPT_AES_BLOCK_SIZE) PBYTE pbDst )
{
#if SYMCRYPT_CPU_AMD64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) )
{
SymCryptAesDecryptXmm( pExpandedKey, pbSrc, pbDst );
} else {
SymCryptAesDecryptAsm( pExpandedKey, pbSrc, pbDst );
}
#elif SYMCRYPT_CPU_X86
SYMCRYPT_EXTENDED_SAVE_DATA SaveData;
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) &&
SymCryptSaveXmm( &SaveData ) == SYMCRYPT_NO_ERROR )
{
SymCryptAesDecryptXmm( pExpandedKey, pbSrc, pbDst );
SymCryptRestoreXmm( &SaveData );
} else {
SymCryptAesDecryptAsm( pExpandedKey, pbSrc, pbDst );
}
#elif SYMCRYPT_CPU_ARM
SymCryptAesDecryptAsm( pExpandedKey, pbSrc, pbDst );
#elif SYMCRYPT_CPU_ARM64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURE_NEON_AES ) )
{
SymCryptAesDecryptNeon( pExpandedKey, pbSrc, pbDst );
} else {
SymCryptAesDecryptC( pExpandedKey, pbSrc, pbDst );
}
#else
SymCryptAesDecryptC( pExpandedKey, pbSrc, pbDst );
#endif
}
VOID
SYMCRYPT_CALL
SymCryptAesCbcEncrypt(
_In_ PCSYMCRYPT_AES_EXPANDED_KEY pExpandedKey,
_Inout_updates_( SYMCRYPT_AES_BLOCK_SIZE ) PBYTE pbChainingValue,
_In_reads_( cbData ) PCBYTE pbSrc,
_Out_writes_( cbData ) PBYTE pbDst,
SIZE_T cbData )
{
#if SYMCRYPT_CPU_AMD64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) )
{
SymCryptAesCbcEncryptXmm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
} else {
SymCryptAesCbcEncryptAsm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
}
#elif SYMCRYPT_CPU_X86
SYMCRYPT_EXTENDED_SAVE_DATA SaveData;
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) &&
SymCryptSaveXmm( &SaveData ) == SYMCRYPT_NO_ERROR )
{
SymCryptAesCbcEncryptXmm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
SymCryptRestoreXmm( &SaveData );
} else {
SymCryptAesCbcEncryptAsm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
}
#elif SYMCRYPT_CPU_ARM
SymCryptAesCbcEncryptAsm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
#elif SYMCRYPT_CPU_ARM64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURE_NEON_AES ) )
{
SymCryptAesCbcEncryptNeon( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
} else {
SymCryptCbcEncrypt( &SymCryptAesBlockCipherNoOpt, pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
}
#else
SymCryptCbcEncrypt( &SymCryptAesBlockCipherNoOpt, pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
#endif
}
VOID
SYMCRYPT_CALL
SymCryptAesCbcDecrypt(
_In_ PCSYMCRYPT_AES_EXPANDED_KEY pExpandedKey,
_Inout_updates_( SYMCRYPT_AES_BLOCK_SIZE ) PBYTE pbChainingValue,
_In_reads_( cbData ) PCBYTE pbSrc,
_Out_writes_( cbData ) PBYTE pbDst,
SIZE_T cbData )
{
#if SYMCRYPT_CPU_AMD64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) )
{
SymCryptAesCbcDecryptXmm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
} else {
SymCryptAesCbcDecryptAsm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
}
#elif SYMCRYPT_CPU_X86
SYMCRYPT_EXTENDED_SAVE_DATA SaveData;
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) &&
SymCryptSaveXmm( &SaveData ) == SYMCRYPT_NO_ERROR )
{
SymCryptAesCbcDecryptXmm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
SymCryptRestoreXmm( &SaveData );
} else {
SymCryptAesCbcDecryptAsm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
}
#elif SYMCRYPT_CPU_ARM
SymCryptAesCbcDecryptAsm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
#elif SYMCRYPT_CPU_ARM64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURE_NEON_AES ) )
{
SymCryptAesCbcDecryptNeon( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
} else {
SymCryptCbcDecrypt( &SymCryptAesBlockCipherNoOpt, pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
}
#else
SymCryptCbcDecrypt( &SymCryptAesBlockCipherNoOpt, pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
#endif
}
VOID
SYMCRYPT_CALL
SymCryptAesEcbEncrypt(
_In_ PCSYMCRYPT_AES_EXPANDED_KEY pExpandedKey,
_In_reads_( cbData ) PCBYTE pbSrc,
_Out_writes_( cbData ) PBYTE pbDst,
SIZE_T cbData )
{
#if SYMCRYPT_CPU_AMD64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) )
{
SymCryptAesEcbEncryptXmm( pExpandedKey, pbSrc, pbDst, cbData );
} else {
SymCryptAesEcbEncryptAsm( pExpandedKey, pbSrc, pbDst, cbData );
}
#elif SYMCRYPT_CPU_X86
SYMCRYPT_EXTENDED_SAVE_DATA SaveData;
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) &&
SymCryptSaveXmm( &SaveData ) == SYMCRYPT_NO_ERROR )
{
SymCryptAesEcbEncryptXmm( pExpandedKey, pbSrc, pbDst, cbData );
SymCryptRestoreXmm( &SaveData );
} else {
SymCryptAesEcbEncryptAsm( pExpandedKey, pbSrc, pbDst, cbData );
}
#elif SYMCRYPT_CPU_ARM
SymCryptAesEcbEncryptAsm( pExpandedKey, pbSrc, pbDst, cbData );
#elif SYMCRYPT_CPU_ARM64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURE_NEON_AES ) )
{
SymCryptAesEcbEncryptNeon( pExpandedKey, pbSrc, pbDst, cbData );
} else {
SymCryptAesEcbEncryptC( pExpandedKey, pbSrc, pbDst, cbData );
}
#else
SymCryptAesEcbEncryptC( pExpandedKey, pbSrc, pbDst, cbData );
#endif
}
//
// NOTE: There is no reason that SymCryptAesEcbDecrypt could not have unrolled versions similar to
// SymCryptAesEcbEncrypt if a real use case requiring large scale Ecb decryption is found.
// For now just decrypt 1 block at a time to reduce code size.
//
VOID
SYMCRYPT_CALL
SymCryptAesEcbDecrypt(
_In_ PCSYMCRYPT_AES_EXPANDED_KEY pExpandedKey,
_In_reads_( cbData ) PCBYTE pbSrc,
_Out_writes_( cbData ) PBYTE pbDst,
SIZE_T cbData )
{
while( cbData >= SYMCRYPT_AES_BLOCK_SIZE )
{
SymCryptAesDecrypt( pExpandedKey, pbSrc, pbDst );
pbSrc += SYMCRYPT_AES_BLOCK_SIZE;
pbDst += SYMCRYPT_AES_BLOCK_SIZE;
cbData -= SYMCRYPT_AES_BLOCK_SIZE;
}
}
VOID
SYMCRYPT_CALL
SymCryptAesCbcMac(
_In_ PCSYMCRYPT_AES_EXPANDED_KEY pExpandedKey,
_Inout_updates_( SYMCRYPT_AES_BLOCK_SIZE ) PBYTE pbChainingValue,
_In_reads_( cbData ) PCBYTE pbData,
SIZE_T cbData )
{
#if SYMCRYPT_CPU_AMD64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) )
{
SymCryptAesCbcMacXmm( pExpandedKey, pbChainingValue, pbData, cbData );
} else {
SYMCRYPT_ASSERT( SymCryptAesBlockCipherNoOpt.blockSize == SYMCRYPT_AES_BLOCK_SIZE );
SymCryptCbcMac( &SymCryptAesBlockCipherNoOpt, pExpandedKey, pbChainingValue, pbData, cbData );
}
#elif SYMCRYPT_CPU_X86
SYMCRYPT_EXTENDED_SAVE_DATA SaveData;
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) &&
SymCryptSaveXmm( &SaveData ) == SYMCRYPT_NO_ERROR )
{
SymCryptAesCbcMacXmm( pExpandedKey, pbChainingValue, pbData, cbData );
SymCryptRestoreXmm( &SaveData );
} else {
SYMCRYPT_ASSERT( SymCryptAesBlockCipherNoOpt.blockSize == SYMCRYPT_AES_BLOCK_SIZE );
SymCryptCbcMac( &SymCryptAesBlockCipherNoOpt, pExpandedKey, pbChainingValue, pbData, cbData );
}
#elif SYMCRYPT_CPU_ARM64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURE_NEON_AES ) )
{
SymCryptAesCbcMacNeon( pExpandedKey, pbChainingValue, pbData, cbData );
} else {
SYMCRYPT_ASSERT( SymCryptAesBlockCipherNoOpt.blockSize == SYMCRYPT_AES_BLOCK_SIZE );
SymCryptCbcMac( &SymCryptAesBlockCipherNoOpt, pExpandedKey, pbChainingValue, pbData, cbData );
}
#else
SYMCRYPT_ASSERT( SymCryptAesBlockCipherNoOpt.blockSize == SYMCRYPT_AES_BLOCK_SIZE );
SymCryptCbcMac( &SymCryptAesBlockCipherNoOpt, pExpandedKey, pbChainingValue, pbData, cbData );
#endif
}
VOID
SYMCRYPT_CALL
SymCryptAesCtrMsb32(
_In_ PCSYMCRYPT_AES_EXPANDED_KEY pExpandedKey,
_Inout_updates_( SYMCRYPT_AES_BLOCK_SIZE ) PBYTE pbChainingValue,
_In_reads_( cbData ) PCBYTE pbSrc,
_Out_writes_( cbData ) PBYTE pbDst,
SIZE_T cbData )
{
#if SYMCRYPT_CPU_AMD64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) )
{
SymCryptAesCtrMsb32Xmm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
} else {
SYMCRYPT_ASSERT( SymCryptAesBlockCipherNoOpt.blockSize == SYMCRYPT_AES_BLOCK_SIZE ); // keep Prefast happy
SymCryptCtrMsb32( &SymCryptAesBlockCipherNoOpt, pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
}
#elif SYMCRYPT_CPU_X86
SYMCRYPT_EXTENDED_SAVE_DATA SaveData;
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) &&
SymCryptSaveXmm( &SaveData ) == SYMCRYPT_NO_ERROR )
{
SymCryptAesCtrMsb32Xmm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
SymCryptRestoreXmm( &SaveData );
} else {
SYMCRYPT_ASSERT( SymCryptAesBlockCipherNoOpt.blockSize == SYMCRYPT_AES_BLOCK_SIZE ); // keep Prefast happy
SymCryptCtrMsb32( &SymCryptAesBlockCipherNoOpt, pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
}
#elif SYMCRYPT_CPU_ARM64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURE_NEON_AES ) )
{
SymCryptAesCtrMsb32Neon( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
} else {
SymCryptCtrMsb32( &SymCryptAesBlockCipherNoOpt, pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
}
#else
SYMCRYPT_ASSERT( SymCryptAesBlockCipherNoOpt.blockSize == SYMCRYPT_AES_BLOCK_SIZE ); // keep Prefast happy
SymCryptCtrMsb32( &SymCryptAesBlockCipherNoOpt, pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
#endif
}
VOID
SYMCRYPT_CALL
SymCryptAesCtrMsb64(
_In_ PCSYMCRYPT_AES_EXPANDED_KEY pExpandedKey,
_Inout_updates_( SYMCRYPT_AES_BLOCK_SIZE ) PBYTE pbChainingValue,
_In_reads_( cbData ) PCBYTE pbSrc,
_Out_writes_( cbData ) PBYTE pbDst,
SIZE_T cbData )
{
#if SYMCRYPT_CPU_AMD64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) )
{
SymCryptAesCtrMsb64Xmm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
} else {
SymCryptAesCtrMsb64Asm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
}
#elif SYMCRYPT_CPU_X86
SYMCRYPT_EXTENDED_SAVE_DATA SaveData;
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_CODE ) &&
SymCryptSaveXmm( &SaveData ) == SYMCRYPT_NO_ERROR )
{
SymCryptAesCtrMsb64Xmm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
SymCryptRestoreXmm( &SaveData );
} else {
SymCryptAesCtrMsb64Asm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
}
#elif SYMCRYPT_CPU_ARM
SymCryptAesCtrMsb64Asm( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
#elif SYMCRYPT_CPU_ARM64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURE_NEON_AES ) )
{
SymCryptAesCtrMsb64Neon( pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
} else {
SymCryptCtrMsb64( &SymCryptAesBlockCipherNoOpt, pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
}
#else
SYMCRYPT_ASSERT( SymCryptAesBlockCipherNoOpt.blockSize == SYMCRYPT_AES_BLOCK_SIZE ); // keep Prefast happy
SymCryptCtrMsb64( &SymCryptAesBlockCipherNoOpt, pExpandedKey, pbChainingValue, pbSrc, pbDst, cbData );
#endif
}
VOID
SYMCRYPT_CALL
SymCryptAesGcmEncryptPartOnePass(
_Inout_ PSYMCRYPT_GCM_STATE pState,
_In_reads_( cbData ) PCBYTE pbSrc,
_Out_writes_( cbData ) PBYTE pbDst,
SIZE_T cbData )
{
SIZE_T bytesToProcess;
#if SYMCRYPT_CPU_AMD64
SYMCRYPT_EXTENDED_SAVE_DATA SaveData;
#endif
//
// We have entered the encrypt phase, the AAD has been padded to be a multiple of block size
// We know that the bytes still to use in the key stream buffer and the bytes left to fill the
// macBlock will be the same in the context of this function
//
SYMCRYPT_ASSERT( (pState->cbData & SYMCRYPT_GCM_BLOCK_MOD_MASK) == pState->bytesInMacBlock );
//
// We update pState->cbData once before we modify cbData.
// pState->cbData is not used in the rest of this function
//
SYMCRYPT_ASSERT( pState->cbData + cbData <= SYMCRYPT_GCM_MAX_DATA_SIZE );
pState->cbData += cbData;
if( pState->bytesInMacBlock > 0 )
{
bytesToProcess = SYMCRYPT_MIN( cbData, SYMCRYPT_GCM_BLOCK_SIZE - pState->bytesInMacBlock );
SymCryptXorBytes(
pbSrc,
&pState->keystreamBlock[pState->bytesInMacBlock],
&pState->macBlock[pState->bytesInMacBlock],
bytesToProcess );
memcpy( pbDst, &pState->macBlock[pState->bytesInMacBlock], bytesToProcess );
pbSrc += bytesToProcess;
pbDst += bytesToProcess;
cbData -= bytesToProcess;
pState->bytesInMacBlock += bytesToProcess;
if( pState->bytesInMacBlock == SYMCRYPT_GCM_BLOCK_SIZE )
{
SymCryptGHashAppendData( &pState->pKey->ghashKey,
&pState->ghashState,
&pState->macBlock[0],
SYMCRYPT_GCM_BLOCK_SIZE );
pState->bytesInMacBlock = 0;
}
//
// If there are bytes left in the key stream buffer, then cbData == 0 and we're done.
// If we used up all the bytes, then we are fine, no need to compute the next key stream block
//
}
if( cbData >= SYMCRYPT_GCM_BLOCK_SIZE )
{
bytesToProcess = cbData & SYMCRYPT_GCM_BLOCK_ROUND_MASK;
//
// We use a Gcm function that increments the CTR by 64 bits, rather than the 32 bits that GCM requires.
// As we only support 12-byte nonces, the 32-bit counter never overflows, and we can safely use
// the 64-bit incrementing primitive.
// If we ever support other nonce sizes this is going to be a big problem.
// You can't fake a 32-bit counter using a 64-bit counter function without side-channels that expose
// information about the current counter value.
// With other nonce sizes the actual counter value itself is not public, so we can't expose that.
// We can do two things:
// - create SymCryptAesGcmEncryptXXX32
// - Accept that we leak information about the counter value; after all it is not treated as a
// secret when the nonce is 12 bytes.
//
SYMCRYPT_ASSERT( pState->pKey->pBlockCipher->blockSize == SYMCRYPT_GCM_BLOCK_SIZE );
#if SYMCRYPT_CPU_AMD64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_VAES_256_CODE ) &&
(bytesToProcess >= GCM_YMM_MINBLOCKS * SYMCRYPT_GCM_BLOCK_SIZE) &&
SymCryptSaveYmm( &SaveData ) == SYMCRYPT_NO_ERROR )
{
SymCryptAesGcmEncryptStitchedYmm_2048(
&pState->pKey->blockcipherKey.aes,
&pState->counterBlock[0],
&pState->pKey->ghashKey.table[0],
&pState->ghashState,
pbSrc,
pbDst,
bytesToProcess );
SymCryptRestoreYmm( &SaveData );
} else {
SymCryptAesGcmEncryptStitchedXmm(
&pState->pKey->blockcipherKey.aes,
&pState->counterBlock[0],
&pState->pKey->ghashKey.table[0],
&pState->ghashState,
pbSrc,
pbDst,
bytesToProcess );
}
#elif SYMCRYPT_CPU_X86
SymCryptAesGcmEncryptStitchedXmm(
&pState->pKey->blockcipherKey.aes,
&pState->counterBlock[0],
(PSYMCRYPT_GF128_ELEMENT)&pState->pKey->ghashKey.tableSpace[pState->pKey->ghashKey.tableOffset],
&pState->ghashState,
pbSrc,
pbDst,
bytesToProcess );
#elif SYMCRYPT_CPU_ARM64
SymCryptAesGcmEncryptStitchedNeon(
&pState->pKey->blockcipherKey.aes,
&pState->counterBlock[0],
&pState->pKey->ghashKey.table[0],
&pState->ghashState,
pbSrc,
pbDst,
bytesToProcess );
#else
SymCryptAesCtrMsb32(&pState->pKey->blockcipherKey.aes,
&pState->counterBlock[0],
pbSrc,
pbDst,
cbData );
//
// We break the read-once/write once rule here by reading the pbDst data back.
// In this particular situation this is safe, and avoiding it is expensive as it
// requires an extra copy and an extra memory buffer.
// The first write exposes the GCM key stream, independent of the underlying data that
// we are processing. From an attacking point of view we can think of this as literally
// handing over the key stream. So encryption consists of two steps:
// - hand over the key stream
// - MAC some ciphertext
// In this view (which has equivalent security properties to GCM) is obviously doesn't
// matter that we read pbDst back.
//
SymCryptGHashAppendData(&pState->pKey->ghashKey,
&pState->ghashState,
pbDst,
cbData );
#endif
pbSrc += bytesToProcess;
pbDst += bytesToProcess;
cbData -= bytesToProcess;
}
if( cbData > 0 )
{
SymCryptWipeKnownSize( &pState->keystreamBlock[0], SYMCRYPT_GCM_BLOCK_SIZE );
SYMCRYPT_ASSERT( pState->pKey->pBlockCipher->blockSize == SYMCRYPT_GCM_BLOCK_SIZE );
SymCryptAesCtrMsb32(&pState->pKey->blockcipherKey.aes,
&pState->counterBlock[0],
&pState->keystreamBlock[0],
&pState->keystreamBlock[0],
SYMCRYPT_GCM_BLOCK_SIZE );
SymCryptXorBytes( &pState->keystreamBlock[0], pbSrc, &pState->macBlock[0], cbData );
memcpy( pbDst, &pState->macBlock[0], cbData );
pState->bytesInMacBlock = cbData;
//
// pState->cbData contains the data length after this call already, so it knows how many
// bytes are left in the keystream block
//
}
}
VOID
SYMCRYPT_CALL
SymCryptAesGcmDecryptPartOnePass(
_Inout_ PSYMCRYPT_GCM_STATE pState,
_In_reads_( cbData ) PCBYTE pbSrc,
_Out_writes_( cbData ) PBYTE pbDst,
SIZE_T cbData )
{
SIZE_T bytesToProcess;
#if SYMCRYPT_CPU_AMD64
SYMCRYPT_EXTENDED_SAVE_DATA SaveData;
#endif
//
// We have entered the decrypt phase, the AAD has been padded to be a multiple of block size
// We know that the bytes still to use in the key stream buffer and the bytes left to fill the
// macBlock will be the same in the context of this function
//
SYMCRYPT_ASSERT( (pState->cbData & SYMCRYPT_GCM_BLOCK_MOD_MASK) == pState->bytesInMacBlock );
//
// We update pState->cbData once before we modify cbData.
// pState->cbData is not used in the rest of this function
//
SYMCRYPT_ASSERT( pState->cbData + cbData <= SYMCRYPT_GCM_MAX_DATA_SIZE );
pState->cbData += cbData;
if( pState->bytesInMacBlock > 0 )
{
bytesToProcess = SYMCRYPT_MIN( cbData, SYMCRYPT_GCM_BLOCK_SIZE - pState->bytesInMacBlock );
memcpy( &pState->macBlock[pState->bytesInMacBlock], pbSrc, bytesToProcess );
SymCryptXorBytes(
&pState->keystreamBlock[pState->bytesInMacBlock],
&pState->macBlock[pState->bytesInMacBlock],
pbDst,
bytesToProcess );
pbSrc += bytesToProcess;
pbDst += bytesToProcess;
cbData -= bytesToProcess;
pState->bytesInMacBlock += bytesToProcess;
if( pState->bytesInMacBlock == SYMCRYPT_GCM_BLOCK_SIZE )
{
SymCryptGHashAppendData( &pState->pKey->ghashKey,
&pState->ghashState,
&pState->macBlock[0],
SYMCRYPT_GCM_BLOCK_SIZE );
pState->bytesInMacBlock = 0;
}
//
// If there are bytes left in the key stream buffer, then cbData == 0 and we're done.
// If we used up all the bytes, then we are fine, no need to compute the next key stream block
//
}
if( cbData >= SYMCRYPT_GCM_BLOCK_SIZE )
{
bytesToProcess = cbData & SYMCRYPT_GCM_BLOCK_ROUND_MASK;
//
// We use a Gcm function that increments the CTR by 64 bits, rather than the 32 bits that GCM requires.
// As we only support 12-byte nonces, the 32-bit counter never overflows, and we can safely use
// the 64-bit incrementing primitive.
// If we ever support other nonce sizes this is going to be a big problem.
// You can't fake a 32-bit counter using a 64-bit counter function without side-channels that expose
// information about the current counter value.
// With other nonce sizes the actual counter value itself is not public, so we can't expose that.
// We can do two things:
// - create SymCryptAesGcmDecryptXXX32
// - Accept that we leak information about the counter value; after all it is not treated as a
// secret when the nonce is 12 bytes.
//
SYMCRYPT_ASSERT( pState->pKey->pBlockCipher->blockSize == SYMCRYPT_GCM_BLOCK_SIZE );
#if SYMCRYPT_CPU_AMD64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_VAES_256_CODE ) &&
(bytesToProcess >= GCM_YMM_MINBLOCKS * SYMCRYPT_GCM_BLOCK_SIZE) &&
SymCryptSaveYmm( &SaveData ) == SYMCRYPT_NO_ERROR )
{
SymCryptAesGcmDecryptStitchedYmm_2048(
&pState->pKey->blockcipherKey.aes,
&pState->counterBlock[0],
&pState->pKey->ghashKey.table[0],
&pState->ghashState,
pbSrc,
pbDst,
bytesToProcess );
SymCryptRestoreYmm( &SaveData );
} else {
SymCryptAesGcmDecryptStitchedXmm(
&pState->pKey->blockcipherKey.aes,
&pState->counterBlock[0],
&pState->pKey->ghashKey.table[0],
&pState->ghashState,
pbSrc,
pbDst,
bytesToProcess );
}
#elif SYMCRYPT_CPU_X86
SymCryptAesGcmDecryptStitchedXmm(
&pState->pKey->blockcipherKey.aes,
&pState->counterBlock[0],
(PSYMCRYPT_GF128_ELEMENT)&pState->pKey->ghashKey.tableSpace[pState->pKey->ghashKey.tableOffset],
&pState->ghashState,
pbSrc,
pbDst,
bytesToProcess );
#elif SYMCRYPT_CPU_ARM64
SymCryptAesGcmDecryptStitchedNeon(
&pState->pKey->blockcipherKey.aes,
&pState->counterBlock[0],
&pState->pKey->ghashKey.table[0],
&pState->ghashState,
pbSrc,
pbDst,
bytesToProcess );
#else
SymCryptGHashAppendData(&pState->pKey->ghashKey,
&pState->ghashState,
pbSrc,
cbData );
//
// Do the actual decryption
// This violates the read-once rule, but it is safe for the same reasons as above
// in the encryption case.
//
SymCryptAesCtrMsb32(&pState->pKey->blockcipherKey.aes,
&pState->counterBlock[0],
pbSrc,
pbDst,
cbData );
#endif
pbSrc += bytesToProcess;
pbDst += bytesToProcess;
cbData -= bytesToProcess;
}
if( cbData > 0 )
{
SymCryptWipeKnownSize( &pState->keystreamBlock[0], SYMCRYPT_GCM_BLOCK_SIZE );
SYMCRYPT_ASSERT( pState->pKey->pBlockCipher->blockSize == SYMCRYPT_GCM_BLOCK_SIZE );
SymCryptAesCtrMsb32(&pState->pKey->blockcipherKey.aes,
&pState->counterBlock[0],
&pState->keystreamBlock[0],
&pState->keystreamBlock[0],
SYMCRYPT_GCM_BLOCK_SIZE );
memcpy( &pState->macBlock[0], pbSrc, cbData );
SymCryptXorBytes(
&pState->keystreamBlock[0],
&pState->macBlock[0],
pbDst,
cbData );
pState->bytesInMacBlock = cbData;
//
// pState->cbData contains the data length after this call already, so it knows how many
// bytes are left in the keystream block
//
}
}
VOID
SYMCRYPT_CALL
SymCryptAesGcmEncryptPart(
_Inout_ PSYMCRYPT_GCM_STATE pState,
_In_reads_( cbData ) PCBYTE pbSrc,
_Out_writes_( cbData ) PBYTE pbDst,
SIZE_T cbData )
{
#if SYMCRYPT_CPU_AMD64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_PCLMULQDQ_CODE ) )
{
SymCryptAesGcmEncryptPartOnePass( pState, pbSrc, pbDst, cbData );
} else {
SymCryptGcmEncryptPartTwoPass( pState, pbSrc, pbDst, cbData );
}
#elif SYMCRYPT_CPU_X86
SYMCRYPT_EXTENDED_SAVE_DATA SaveData;
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_PCLMULQDQ_CODE ) &&
SymCryptSaveXmm( &SaveData ) == SYMCRYPT_NO_ERROR )
{
SymCryptAesGcmEncryptPartOnePass( pState, pbSrc, pbDst, cbData );
SymCryptRestoreXmm( &SaveData );
} else {
SymCryptGcmEncryptPartTwoPass( pState, pbSrc, pbDst, cbData );
}
#elif SYMCRYPT_CPU_ARM64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURE_NEON_AES | SYMCRYPT_CPU_FEATURE_NEON_PMULL ) )
{
SymCryptAesGcmEncryptPartOnePass( pState, pbSrc, pbDst, cbData );
} else {
SymCryptGcmEncryptPartTwoPass( pState, pbSrc, pbDst, cbData );
}
#else
SymCryptGcmEncryptPartTwoPass( pState, pbSrc, pbDst, cbData );
#endif
}
VOID
SYMCRYPT_CALL
SymCryptAesGcmDecryptPart(
_Inout_ PSYMCRYPT_GCM_STATE pState,
_In_reads_( cbData ) PCBYTE pbSrc,
_Out_writes_( cbData ) PBYTE pbDst,
SIZE_T cbData )
{
#if SYMCRYPT_CPU_AMD64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_PCLMULQDQ_CODE ) )
{
SymCryptAesGcmDecryptPartOnePass( pState, pbSrc, pbDst, cbData );
} else {
SymCryptGcmDecryptPartTwoPass( pState, pbSrc, pbDst, cbData );
}
#elif SYMCRYPT_CPU_X86
SYMCRYPT_EXTENDED_SAVE_DATA SaveData;
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURES_FOR_AESNI_PCLMULQDQ_CODE ) &&
SymCryptSaveXmm( &SaveData ) == SYMCRYPT_NO_ERROR )
{
SymCryptAesGcmDecryptPartOnePass( pState, pbSrc, pbDst, cbData );
SymCryptRestoreXmm( &SaveData );
} else {
SymCryptGcmDecryptPartTwoPass( pState, pbSrc, pbDst, cbData );
}
#elif SYMCRYPT_CPU_ARM64
if( SYMCRYPT_CPU_FEATURES_PRESENT( SYMCRYPT_CPU_FEATURE_NEON_AES | SYMCRYPT_CPU_FEATURE_NEON_PMULL ) )
{
SymCryptAesGcmDecryptPartOnePass( pState, pbSrc, pbDst, cbData );
} else {
SymCryptGcmDecryptPartTwoPass( pState, pbSrc, pbDst, cbData );
}
#else
SymCryptGcmDecryptPartTwoPass( pState, pbSrc, pbDst, cbData );
#endif
}