-
Notifications
You must be signed in to change notification settings - Fork 152
/
Copy pathkohya.py
729 lines (633 loc) · 26 KB
/
kohya.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
import os
import fnmatch
import re
import logging
from typing import Any, List
import torch
from .utils import precalculate_safetensors_hashes
from .wrapper import LycorisNetwork, network_module_dict, deprecated_arg_dict
from .modules.locon import LoConModule
from .modules.loha import LohaModule
from .modules.ia3 import IA3Module
from .modules.lokr import LokrModule
from .modules.dylora import DyLoraModule
from .modules.glora import GLoRAModule
from .modules.norms import NormModule
from .modules.full import FullModule
from .modules.diag_oft import DiagOFTModule
from .modules.boft import ButterflyOFTModule
from .modules import make_module, get_module
from .config import PRESET
from .utils.preset import read_preset
from .utils import str_bool
from .logging import logger
def create_network(
multiplier, network_dim, network_alpha, vae, text_encoder, unet, **kwargs
):
for key, value in list(kwargs.items()):
if key in deprecated_arg_dict:
logger.warning(
f"{key} is deprecated. Please use {deprecated_arg_dict[key]} instead.",
stacklevel=2,
)
kwargs[deprecated_arg_dict[key]] = value
if network_dim is None:
network_dim = 4 # default
conv_dim = int(kwargs.get("conv_dim", network_dim) or network_dim)
conv_alpha = float(kwargs.get("conv_alpha", network_alpha) or network_alpha)
dropout = float(kwargs.get("dropout", 0.0) or 0.0)
rank_dropout = float(kwargs.get("rank_dropout", 0.0) or 0.0)
module_dropout = float(kwargs.get("module_dropout", 0.0) or 0.0)
algo = (kwargs.get("algo", "lora") or "lora").lower()
use_tucker = str_bool(
not kwargs.get("disable_conv_cp", True)
or kwargs.get("use_conv_cp", False)
or kwargs.get("use_cp", False)
or kwargs.get("use_tucker", False)
)
use_scalar = str_bool(kwargs.get("use_scalar", False))
block_size = int(kwargs.get("block_size", None) or 4)
train_norm = str_bool(kwargs.get("train_norm", False))
constraint = float(kwargs.get("constraint", None) or 0)
rescaled = str_bool(kwargs.get("rescaled", False))
weight_decompose = str_bool(kwargs.get("dora_wd", False))
wd_on_output = str_bool(kwargs.get("wd_on_output", False))
full_matrix = str_bool(kwargs.get("full_matrix", False))
bypass_mode = str_bool(kwargs.get("bypass_mode", None))
rs_lora = str_bool(kwargs.get("rs_lora", False))
unbalanced_factorization = str_bool(kwargs.get("unbalanced_factorization", False))
train_t5xxl = str_bool(kwargs.get("train_t5xxl", False))
#lora_plus
loraplus_lr_ratio = float(kwargs.get("loraplus_lr_ratio", None)) if kwargs.get("loraplus_lr_ratio", None) is not None else None
loraplus_unet_lr_ratio = float(kwargs.get("loraplus_unet_lr_ratio", None)) if kwargs.get("loraplus_unet_lr_ratio", None) is not None else None
loraplus_text_encoder_lr_ratio = float(kwargs.get("loraplus_text_encoder_lr_ratio", None)) if kwargs.get("loraplus_text_encoder_lr_ratio", None) is not None else None
if loraplus_lr_ratio is not None or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None:
network.set_loraplus_lr_ratio(loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio)
if unbalanced_factorization:
logger.info("Unbalanced factorization for LoKr is enabled")
if bypass_mode:
logger.info("Bypass mode is enabled")
if weight_decompose:
logger.info("Weight decomposition is enabled")
if full_matrix:
logger.info("Full matrix mode for LoKr is enabled")
preset_str = kwargs.get("preset", "full")
if preset_str not in PRESET:
preset = read_preset(preset_str)
else:
preset = PRESET[preset_str]
assert preset is not None
LycorisNetworkKohya.apply_preset(preset)
logger.info(f"Using rank adaptation algo: {algo}")
if algo == "ia3" and preset_str != "ia3":
logger.warning("It is recommended to use preset ia3 for IA^3 algorithm")
network = LycorisNetworkKohya(
text_encoder,
unet,
multiplier=multiplier,
lora_dim=network_dim,
conv_lora_dim=conv_dim,
alpha=network_alpha,
conv_alpha=conv_alpha,
dropout=dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
use_tucker=use_tucker,
use_scalar=use_scalar,
network_module=algo,
train_norm=train_norm,
decompose_both=kwargs.get("decompose_both", False),
factor=kwargs.get("factor", -1),
block_size=block_size,
constraint=constraint,
rescaled=rescaled,
weight_decompose=weight_decompose,
wd_on_out=wd_on_output,
full_matrix=full_matrix,
bypass_mode=bypass_mode,
rs_lora=rs_lora,
unbalanced_factorization=unbalanced_factorization,
train_t5xxl=train_t5xxl,
)
return network
def create_network_from_weights(
multiplier,
file,
vae,
text_encoder,
unet,
weights_sd=None,
for_inference=False,
**kwargs,
):
if weights_sd is None:
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# get dim/alpha mapping
unet_loras = {}
te_loras = {}
for key, value in weights_sd.items():
if "." not in key:
continue
lora_name = key.split(".")[0]
if lora_name.startswith(LycorisNetworkKohya.LORA_PREFIX_UNET):
unet_loras[lora_name] = None
elif lora_name.startswith(LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER):
te_loras[lora_name] = None
for name, modules in unet.named_modules():
lora_name = f"{LycorisNetworkKohya.LORA_PREFIX_UNET}_{name}".replace(".", "_")
if lora_name in unet_loras:
unet_loras[lora_name] = modules
if text_encoder:
if isinstance(text_encoder, list):
text_encoders = text_encoder
use_index = True
else:
text_encoders = [text_encoder]
use_index = False
for idx, te in enumerate(text_encoders):
if use_index:
prefix = f"{LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER}{idx+1}"
else:
prefix = LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER
for name, modules in te.named_modules():
lora_name = f"{prefix}_{name}".replace(".", "_")
if lora_name in te_loras:
te_loras[lora_name] = modules
original_level = logger.level
logger.setLevel(logging.ERROR)
network = LycorisNetworkKohya(text_encoder, unet)
network.unet_loras = []
network.text_encoder_loras = []
logger.setLevel(original_level)
logger.info("Loading UNet Modules from state dict...")
for lora_name, orig_modules in unet_loras.items():
if orig_modules is None:
continue
lyco_type, params = get_module(weights_sd, lora_name)
module = make_module(lyco_type, params, lora_name, orig_modules)
if module is not None:
network.unet_loras.append(module)
logger.info(f"{len(network.unet_loras)} Modules Loaded")
logger.info("Loading TE Modules from state dict...")
if text_encoder:
for lora_name, orig_modules in te_loras.items():
if orig_modules is None:
continue
lyco_type, params = get_module(weights_sd, lora_name)
module = make_module(lyco_type, params, lora_name, orig_modules)
if module is not None:
network.text_encoder_loras.append(module)
logger.info(f"{len(network.text_encoder_loras)} Modules Loaded")
for lora in network.unet_loras + network.text_encoder_loras:
lora.multiplier = multiplier
return network, weights_sd
class LycorisNetworkKohya(LycorisNetwork):
"""
LoRA + LoCon
"""
# Ignore proj_in or proj_out, their channels is only a few.
ENABLE_CONV = True
UNET_TARGET_REPLACE_MODULE = [
"Transformer2DModel",
"ResnetBlock2D",
"Downsample2D",
"Upsample2D",
"HunYuanDiTBlock",
"DoubleStreamBlock",
"SingleStreamBlock",
"SingleDiTBlock",
"MMDoubleStreamBlock", #HunYuanVideo
"MMSingleStreamBlock", #HunYuanVideo
]
UNET_TARGET_REPLACE_NAME = [
"conv_in",
"conv_out",
"time_embedding.linear_1",
"time_embedding.linear_2",
]
TEXT_ENCODER_TARGET_REPLACE_MODULE = [
"CLIPAttention",
"CLIPSdpaAttention",
"CLIPMLP",
"MT5Block",
"BertLayer",
]
TEXT_ENCODER_TARGET_REPLACE_NAME = []
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
MODULE_ALGO_MAP = {}
NAME_ALGO_MAP = {}
USE_FNMATCH = False
@classmethod
def apply_preset(cls, preset):
if "enable_conv" in preset:
cls.ENABLE_CONV = preset["enable_conv"]
if "unet_target_module" in preset:
cls.UNET_TARGET_REPLACE_MODULE = preset["unet_target_module"]
if "unet_target_name" in preset:
cls.UNET_TARGET_REPLACE_NAME = preset["unet_target_name"]
if "text_encoder_target_module" in preset:
cls.TEXT_ENCODER_TARGET_REPLACE_MODULE = preset[
"text_encoder_target_module"
]
if "text_encoder_target_name" in preset:
cls.TEXT_ENCODER_TARGET_REPLACE_NAME = preset["text_encoder_target_name"]
if "module_algo_map" in preset:
cls.MODULE_ALGO_MAP = preset["module_algo_map"]
if "name_algo_map" in preset:
cls.NAME_ALGO_MAP = preset["name_algo_map"]
if "use_fnmatch" in preset:
cls.USE_FNMATCH = preset["use_fnmatch"]
return cls
def __init__(
self,
text_encoder,
unet,
multiplier=1.0,
lora_dim=4,
conv_lora_dim=4,
alpha=1,
conv_alpha=1,
use_tucker=False,
dropout=0,
rank_dropout=0,
module_dropout=0,
network_module: str = "locon",
norm_modules=NormModule,
train_norm=False,
train_t5xxl=False,
**kwargs,
) -> None:
torch.nn.Module.__init__(self)
root_kwargs = kwargs
self.multiplier = multiplier
self.lora_dim = lora_dim
self.train_t5xxl = train_t5xxl
# 初始化LoRA+相关属性
self.loraplus_lr_ratio = None
self.loraplus_unet_lr_ratio = None
self.loraplus_text_encoder_lr_ratio = None
if not self.ENABLE_CONV:
conv_lora_dim = 0
self.conv_lora_dim = int(conv_lora_dim)
if self.conv_lora_dim and self.conv_lora_dim != self.lora_dim:
logger.info("Apply different lora dim for conv layer")
logger.info(f"Conv Dim: {conv_lora_dim}, Linear Dim: {lora_dim}")
elif self.conv_lora_dim == 0:
logger.info("Disable conv layer")
self.alpha = alpha
self.conv_alpha = float(conv_alpha)
if self.conv_lora_dim and self.alpha != self.conv_alpha:
logger.info("Apply different alpha value for conv layer")
logger.info(f"Conv alpha: {conv_alpha}, Linear alpha: {alpha}")
if 1 >= dropout >= 0:
logger.info(f"Use Dropout value: {dropout}")
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
self.use_tucker = use_tucker
def create_single_module(
lora_name: str,
module: torch.nn.Module,
algo_name,
dim=None,
alpha=None,
use_tucker=self.use_tucker,
**kwargs,
):
for k, v in root_kwargs.items():
if k in kwargs:
continue
kwargs[k] = v
if train_norm and "Norm" in module.__class__.__name__:
return norm_modules(
lora_name,
module,
self.multiplier,
self.rank_dropout,
self.module_dropout,
**kwargs,
)
lora = None
if isinstance(module, torch.nn.Linear) and lora_dim > 0:
dim = dim or lora_dim
alpha = alpha or self.alpha
elif isinstance(
module, (torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d)
):
k_size, *_ = module.kernel_size
if k_size == 1 and lora_dim > 0:
dim = dim or lora_dim
alpha = alpha or self.alpha
elif conv_lora_dim > 0 or dim:
dim = dim or conv_lora_dim
alpha = alpha or self.conv_alpha
else:
return None
else:
return None
lora = network_module_dict[algo_name](
lora_name,
module,
self.multiplier,
dim,
alpha,
self.dropout,
self.rank_dropout,
self.module_dropout,
use_tucker,
**kwargs,
)
return lora
def create_modules_(
prefix: str,
root_module: torch.nn.Module,
algo,
configs={},
):
loras = {}
lora_names = []
for name, module in root_module.named_modules():
module_name = module.__class__.__name__
if module_name in self.MODULE_ALGO_MAP and module is not root_module:
next_config = self.MODULE_ALGO_MAP[module_name]
next_algo = next_config.get("algo", algo)
new_loras, new_lora_names = create_modules_(
f"{prefix}_{name}", module, next_algo, next_config
)
for lora_name, lora in zip(new_lora_names, new_loras):
if lora_name not in loras:
loras[lora_name] = lora
lora_names.append(lora_name)
continue
if name:
lora_name = prefix + "." + name
else:
lora_name = prefix
lora_name = lora_name.replace(".", "_")
if lora_name in loras:
continue
lora = create_single_module(lora_name, module, algo, **configs)
if lora is not None:
loras[lora_name] = lora
lora_names.append(lora_name)
return [loras[lora_name] for lora_name in lora_names], lora_names
# create module instances
def create_modules(
prefix,
root_module: torch.nn.Module,
target_replace_modules,
target_replace_names=[],
) -> List:
logger.info("Create LyCORIS Module")
loras = []
next_config = {}
for name, module in root_module.named_modules():
module_name = module.__class__.__name__
if module_name in target_replace_modules and not any(
self.match_fn(t, name) for t in target_replace_names
):
if module_name in self.MODULE_ALGO_MAP:
next_config = self.MODULE_ALGO_MAP[module_name]
algo = next_config.get("algo", network_module)
else:
algo = network_module
loras.extend(
create_modules_(f"{prefix}_{name}", module, algo, next_config)[
0
]
)
next_config = {}
elif name in target_replace_names or any(
self.match_fn(t, name) for t in target_replace_names
):
conf_from_name = self.find_conf_for_name(name)
if conf_from_name is not None:
next_config = conf_from_name
algo = next_config.get("algo", network_module)
elif module_name in self.MODULE_ALGO_MAP:
next_config = self.MODULE_ALGO_MAP[module_name]
algo = next_config.get("algo", network_module)
else:
algo = network_module
lora_name = prefix + "." + name
lora_name = lora_name.replace(".", "_")
lora = create_single_module(lora_name, module, algo, **next_config)
next_config = {}
if lora is not None:
loras.append(lora)
return loras
if network_module == GLoRAModule:
logger.info("GLoRA enabled, only train transformer")
# only train transformer (for GLoRA)
LycorisNetworkKohya.UNET_TARGET_REPLACE_MODULE = [
"Transformer2DModel",
"Attention",
]
LycorisNetworkKohya.UNET_TARGET_REPLACE_NAME = []
self.text_encoder_loras = []
if text_encoder:
if isinstance(text_encoder, list):
text_encoders = text_encoder
use_index = True
else:
text_encoders = [text_encoder]
use_index = False
for i, te in enumerate(text_encoders):
self.text_encoder_loras.extend(
create_modules(
LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER
+ (f"{i+1}" if use_index else ""),
te,
LycorisNetworkKohya.TEXT_ENCODER_TARGET_REPLACE_MODULE,
LycorisNetworkKohya.TEXT_ENCODER_TARGET_REPLACE_NAME,
)
)
logger.info(
f"create LyCORIS for Text Encoder: {len(self.text_encoder_loras)} modules."
)
self.unet_loras = create_modules(
LycorisNetworkKohya.LORA_PREFIX_UNET,
unet,
LycorisNetworkKohya.UNET_TARGET_REPLACE_MODULE,
LycorisNetworkKohya.UNET_TARGET_REPLACE_NAME,
)
logger.info(f"create LyCORIS for U-Net: {len(self.unet_loras)} modules.")
algo_table = {}
for lora in self.text_encoder_loras + self.unet_loras:
algo_table[lora.__class__.__name__] = (
algo_table.get(lora.__class__.__name__, 0) + 1
)
logger.info(f"module type table: {algo_table}")
self.weights_sd = None
self.loras = self.text_encoder_loras + self.unet_loras
# assertion
names = set()
for lora in self.loras:
assert (
lora.lora_name not in names
), f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def match_fn(self, pattern: str, name: str) -> bool:
if self.USE_FNMATCH:
return fnmatch.fnmatch(name, pattern)
return re.match(pattern, name)
def find_conf_for_name(
self,
name: str,
) -> dict[str, Any]:
if name in self.NAME_ALGO_MAP.keys():
return self.NAME_ALGO_MAP[name]
for key, value in self.NAME_ALGO_MAP.items():
if self.match_fn(key, name):
return value
return None
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
self.weights_sd = load_file(file)
else:
self.weights_sd = torch.load(file, map_location="cpu")
missing, unexpected = self.load_state_dict(self.weights_sd, strict=False)
state = {}
if missing:
state["missing keys"] = missing
if unexpected:
state["unexpected keys"] = unexpected
return state
def apply_to(self, text_encoder, unet, apply_text_encoder=None, apply_unet=None):
assert (
apply_text_encoder is not None and apply_unet is not None
), f"internal error: flag not set"
if apply_text_encoder:
logger.info("enable LyCORIS for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info("enable LyCORIS for U-Net")
else:
self.unet_loras = []
self.loras = self.text_encoder_loras + self.unet_loras
for lora in self.loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
if self.weights_sd:
# if some weights are not in state dict, it is ok because initial LoRA does nothing (lora_up is initialized by zeros)
info = self.load_state_dict(self.weights_sd, False)
logger.info(f"weights are loaded: {info}")
# TODO refactor to common function with apply_to
def merge_to(self, text_encoder, unet, weights_sd, dtype, device):
apply_text_encoder = apply_unet = False
for key in weights_sd.keys():
if key.startswith(LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER):
apply_text_encoder = True
elif key.startswith(LycorisNetworkKohya.LORA_PREFIX_UNET):
apply_unet = True
if apply_text_encoder:
logger.info("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info("enable LoRA for U-Net")
else:
self.unet_loras = []
self.loras = self.text_encoder_loras + self.unet_loras
super().merge_to(1)
def apply_max_norm_regularization(self, max_norm_value, device):
key_scaled = 0
norms = []
for module in self.unet_loras + self.text_encoder_loras:
scaled, norm = module.apply_max_norm(max_norm_value, device)
if scaled is None:
continue
norms.append(norm)
key_scaled += scaled
if key_scaled == 0:
return 0, 0, 0
return key_scaled, sum(norms) / len(norms), max(norms)
def set_loraplus_lr_ratio(self, loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio):
self.loraplus_lr_ratio = loraplus_lr_ratio
self.loraplus_unet_lr_ratio = loraplus_unet_lr_ratio
self.loraplus_text_encoder_lr_ratio = loraplus_text_encoder_lr_ratio
logger.info(f"LoRA+ UNet LR Ratio: {self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio}")
logger.info(f"LoRA+ Text Encoder LR Ratio: {self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio}")
def prepare_optimizer_params(self, text_encoder_lr=None, unet_lr: float = 1e-4, learning_rate=None):
self.requires_grad_(True)
all_params = []
lr_descriptions = []
def assemble_params(loras, lr, ratio):
param_groups = {"lora": {}, "plus": {}}
for lora in loras:
for name, param in lora.named_parameters():
if ratio is not None and "lora_up" in name:
param_groups["plus"][f"{lora.lora_name}.{name}"] = param
else:
param_groups["lora"][f"{lora.lora_name}.{name}"] = param
params = []
descriptions = []
for key in param_groups.keys():
param_data = {"params": param_groups[key].values()}
if len(param_data["params"]) == 0:
continue
if lr is not None:
if key == "plus":
param_data["lr"] = lr * ratio
else:
param_data["lr"] = lr
if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None:
logger.info("NO LR skipping!")
continue
params.append(param_data)
descriptions.append("plus" if key == "plus" else "")
return params, descriptions
if self.text_encoder_loras:
params, descriptions = assemble_params(
self.text_encoder_loras,
text_encoder_lr if text_encoder_lr is not None else default_lr,
self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio,
)
all_params.extend(params)
lr_descriptions.extend(["textencoder" + (" " + d if d else "") for d in descriptions])
if self.unet_loras:
params, descriptions = assemble_params(
self.unet_loras,
unet_lr if unet_lr is not None else default_lr,
self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio,
)
all_params.extend(params)
lr_descriptions.extend(["unet" + (" " + d if d else "") for d in descriptions])
return all_params, lr_descriptions
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_grad_etc(self, unet):
self.requires_grad_(True)
def on_epoch_start(self, unet):
self.train()
def on_step_start(self):
pass
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash = precalculate_safetensors_hashes(state_dict)
metadata["sshs_model_hash"] = model_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)