-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpreprocessing.py
189 lines (151 loc) · 6.92 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python3
import os
import pandas as pd
import numpy as np
import pickle as pkl
import subprocess
import argparse
import shutil
from shutil import which
from collections import Counter
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
#############################################################
######################## Parameters #######################
#############################################################
parser = argparse.ArgumentParser(description="""PhaTYP is a python library for bacteriophages' lifestyles prediction.
PhaTYP is a BERT-based model and rely on protein-based vocabulary to convert DNA sequences into sentences for prediction.""")
parser.add_argument('--contigs', help='FASTA file of contigs', default = 'test_contigs.fa')
parser.add_argument('--len', help='minimun length of contigs', type=int, default=3000)
parser.add_argument('--midfolder', help='folder to store the intermediate files', type=str, default='phatyp/')
parser.add_argument('--prodigal', help='version of prodigal', type=str, default='prodigal')
parser.add_argument('--threads', help='version of prodigal', type=str, default='2')
inputs = parser.parse_args()
#############################################################
###################### Check folders ######################
#############################################################
out_fn = inputs.midfolder
transformer_fn = inputs.midfolder
if not os.path.isdir(out_fn):
os.makedirs(out_fn)
#############################################################
################## Filter short contigs ###################
#############################################################
rec = []
for record in SeqIO.parse(inputs.contigs, 'fasta'):
if len(record.seq) > inputs.len:
rec.append(record)
SeqIO.write(rec, f'{out_fn}/filtered_contigs.fa', 'fasta')
#############################################################
#################### Prodigal translation #################
#############################################################
prodigal = inputs.prodigal
# check if pprodigal is available
if which("pprodigal") is not None and prodigal == 'prodigal':
print("Using parallelized prodigal...")
prodigal = f'pprodigal -T {inputs.threads}'
prodigal_cmd = f'{prodigal} -i {out_fn}/filtered_contigs.fa -a {out_fn}/test_protein.fa -f gff -p meta'
print(f"Running {prodigal}...")
_ = subprocess.check_call(prodigal_cmd, shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
#############################################################
#################### DIAMOND BLASTP #######################
#############################################################
print("\n\n" + "{:-^80}".format("Diamond BLASTp"))
print("Creating Diamond database and running Diamond...")
try:
# create database
make_diamond_cmd = f'diamond makedb --threads 8 --in database/database.fa.gz -d {out_fn}/database.dmnd'
print("Creating Diamond database...")
_ = subprocess.check_call(make_diamond_cmd, shell=True)
# running alignment
diamond_cmd = f'diamond blastp --threads 8 --sensitive -d {out_fn}/database.dmnd -q {out_fn}/test_protein.fa -o {out_fn}/results.tab -k 1'
print("Running Diamond...")
_ = subprocess.check_call(diamond_cmd, shell=True)
diamond_out_fp = f"{out_fn}/results.tab"
database_abc_fp = f"{out_fn}/results.abc"
_ = subprocess.check_call("awk '$1!=$2 {{print $1,$2,$11}}' {0} > {1}".format(diamond_out_fp, database_abc_fp), shell=True)
except:
print("create database failed")
exit(1)
#############################################################
#################### Contig2Sentence ######################
#############################################################
# Load dictonary and BLAST results
proteins_df = pd.read_csv('database/proteins.csv')
proteins_df.dropna(axis=0, how='any', inplace=True)
pc2wordsid = {pc: idx for idx, pc in enumerate(sorted(set(proteins_df['cluster'].values)))}
protein2pc = {protein: pc for protein, pc in zip(proteins_df['protein_id'].values, proteins_df['cluster'].values)}
blast_df = pd.read_csv(f"{out_fn}/results.abc", sep=' ', names=['query', 'ref', 'evalue'])
# Parse the DIAMOND results
contig2pcs = {}
for query, ref, evalue in zip(blast_df['query'].values, blast_df['ref'].values, blast_df['evalue'].values):
conitg = query.rsplit('_', 1)[0]
idx = query.rsplit('_', 1)[1]
pc = pc2wordsid[protein2pc[ref]]
try:
contig2pcs[conitg].append((idx, pc, evalue))
except:
contig2pcs[conitg] = [(idx, pc, evalue)]
# Sorted by position
for contig in contig2pcs:
contig2pcs[contig] = sorted(contig2pcs[contig], key=lambda tup: tup[0])
# Contigs2sentence
contig2id = {contig:idx for idx, contig in enumerate(contig2pcs.keys())}
id2contig = {idx:contig for idx, contig in enumerate(contig2pcs.keys())}
sentence = np.zeros((len(contig2id.keys()), 300))
sentence_weight = np.ones((len(contig2id.keys()), 300))
for row in range(sentence.shape[0]):
contig = id2contig[row]
pcs = contig2pcs[contig]
for col in range(len(pcs)):
try:
_, sentence[row][col], sentence_weight[row][col] = pcs[col]
sentence[row][col] += 1
except:
break
# Corresponding Evalue weight
#sentence_weight[sentence_weight<1e-200] = 1e-200
#sentence_weight = -np.log(sentence_weight)/200
# propostion
rec = []
for key in blast_df['query'].values:
name = key.rsplit('_', 1)[0]
rec.append(name)
counter = Counter(rec)
mapped_num = np.array([counter[item] for item in id2contig.values()])
rec = []
for record in SeqIO.parse(f'{out_fn}/test_protein.fa', 'fasta'):
name = record.id
name = name.rsplit('_', 1)[0]
rec.append(name)
counter = Counter(rec)
total_num = np.array([counter[item] for item in id2contig.values()])
proportion = mapped_num/total_num
# Store the parameters
pkl.dump(sentence, open(f'{transformer_fn}/sentence.feat', 'wb'))
pkl.dump(id2contig, open(f'{transformer_fn}/sentence_id2contig.dict', 'wb'))
pkl.dump(proportion, open(f'{transformer_fn}/sentence_proportion.feat', 'wb'))
pkl.dump(pc2wordsid, open(f'{transformer_fn}/pc2wordsid.dict', 'wb'))
#############################################################
################# Convert2BERT input ######################
#############################################################
feat = pkl.load(open(f'{transformer_fn}/sentence.feat', 'rb'))
pcs = pkl.load(open('database/pc2wordsid.dict', 'rb'))
id2pcs = {item: key for key, item in pcs.items()}
text = []
label = []
for line in feat:
sentence = ""
flag = 0
for i in range(len(line)-2):
if line[i]-1 == -1:
flag = 1
sentence = sentence[:-1]
break
sentence = sentence + id2pcs[line[i]-1] + ' '
if flag == 0:
sentence = sentence[:-1]
text.append(sentence)
label.append(1)
feat_df = pd.DataFrame({'label':label, 'text':text})
feat_df.to_csv(f'{transformer_fn}/bert_feat.csv', index=None)