-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
64 lines (48 loc) · 1.82 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
import streamlit as st
import numpy as np
import PIL.Image
#from PIL import Image
from fastai.vision.all import *
import pathlib
import matplotlib.pyplot as pt
import pathlib
plt = platform.system()
if plt == 'Windows': pathlib.PosixPath = pathlib.WindowsPath
model = load_learner('ksl_model.pkl')
def predict(image_path):
# load the image and convert into
# numpy array
#image= Image.open(image)
# image = Image.open(image)
# PIL images into NumPy arrays
pred_label= model.predict(image_path)
return pred_label
def show_likelihood(pred_label):
class_probs = pred_label[2].numpy()
classes = ["Temple", "You", "Me", "You", "Friend", "Love", "Enough", "Church","Mosque"]
class_labels = [classes[i] for i in range(len(class_probs))]
fig = pt.figure(figsize=(10, 10))
pt.barh(class_labels, class_probs)
pt.ylabel("Class")
pt.xlabel("Probability")
pt.title("Class Probabilities")
pt.xlim(0, 1)
pt.ylim(-1, len(class_probs))
st.pyplot(fig)
def main():
st.image('ksl1.jpg')
st.write("# KSL Image Classification App")
st.write("This app allows you to upload an image and have it classified by a trained machine learning model.")
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
image = PIL.Image.open(uploaded_file)
image_path = os.path.join("tempDir",uploaded_file.name)
with open(image_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.image(image, caption="Uploaded Image", use_column_width=True)
pred_label = predict(image_path)
st.write("The image was classified as:", pred_label[0])
show_likelihood(pred_label)
if __name__ == '__main__':
main()