-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
230 lines (194 loc) · 10.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
import argparse
import torchmetrics
import os
import optuna
from optuna.trial import TrialState
from optuna.samplers import RandomSampler
from datetime import datetime
from model import HGNN
from data_utils import generate_subqueries, prep_data, create_batch_data_object
from eval import eval, compute_metrics
import json
from load_watdiv import load_watdiv_benchmark
from load_fb15k237 import load_fb15k237_benchmark
def train(device, feat_dim, shapes_dict, train_data, val_data, log_directory, model_directory, args, subqueries=None, trial=None):
# Samples hyperparameters if a trial object is passed to the train function
if trial:
print('Starting trial-{}!'.format(trial.number))
args.base_dim = trial.suggest_int('base_dim', 8, 64)
args.learning_rate = trial.suggest_float("learning_rate", 0.0001, 0.1001, step=0.0005) #default 0.001
args.negative_slope = trial.suggest_float('negative_slope', 0.001, 0.101, step=0.005) #default 0.01
# args.positive_sample_weight = trial.suggest_int('positive_sample_weight', 1, 100)
with open(os.path.join(log_directory, 'trial-{}-config.txt'.format(trial.number)), 'w') as f:
json.dump(args.__dict__, f, indent=2)
else:
with open(os.path.join(log_directory, 'config.txt'), 'w') as f:
json.dump(args.__dict__, f, indent=2)
# Creates a model instance
model = HGNN(query_string=args.query_string, feat_dim=feat_dim, base_dim=args.base_dim, shapes_dict=shapes_dict,
num_layers=args.num_layers, negative_slope=args.negative_slope, subqueries=subqueries)
model.to(device)
for name, param in model.named_parameters():
print(name, type(param.data), param.size())
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
threshold = 0.5
train_precision = torchmetrics.Precision(threshold=threshold).to(device)
train_recall = torchmetrics.Recall(threshold=threshold).to(device)
# Main training loop
val_ap = 0
for epoch in range(1, args.epochs + 1):
print('Epoch-{0}!'.format(epoch))
model.train()
optimizer.zero_grad()
torch.cuda.empty_cache()
total_train_loss = 0
# Creates batch with specified batch size
batch = [train_data[i] for i in torch.randperm(len(train_data))[:args.batch_size]]
# Batches KGs for FB15k237 benchmarks for parallel processing
if len(train_data) > 20:
batch = [create_batch_data_object(batch)]
print('Training!')
# Loops through data objects in a batch
for data_object in batch:
pred = model(data_object.x, data_object.indices_dict, logits=True, device=device).flatten()
pred = pred[data_object.nodes]
y = data_object.y.to(device)
sample_weights_train = args.positive_sample_weight * y + (torch.ones(len(y), device=device) - y)
loss = torch.nn.functional.binary_cross_entropy_with_logits(pred, y, weight=sample_weights_train)
loss.backward()
total_train_loss = total_train_loss + loss
pred = torch.sigmoid(pred)
train_precision(pred, y.int())
train_recall(pred, y.int())
# Updates parameters for every batch
optimizer.step()
print('Loss: ' + str(total_train_loss.item()))
pre = train_precision.compute().item()
re = train_recall.compute().item()
print('Precision for all samples: ' + str(pre))
print('Recall for all samples: ' + str(re))
train_precision.reset()
train_recall.reset()
if (epoch != 0) and (epoch % args.val_epochs == 0):
with torch.no_grad():
model.eval()
loss, val_pre, val_re, val_ap, val_unobserved_pre, val_unobserved_re, val_unobserved_ap = compute_metrics(
val_data, model, device, threshold)
print('Validating!')
print('Validation loss: ' + str(loss.item()))
print('Precision for all samples: ' + str(val_pre))
print('Recall for all samples: ' + str(val_re))
print('AP for all samples: ' + str(val_ap))
print('Precision for unmasked samples: ' + str(val_unobserved_pre))
print('Recall for unmasked samples: ' + str(val_unobserved_re))
print('AP for unmasked samples: ' + str(val_unobserved_ap))
if trial:
trial.report(val_ap, epoch)
if trial.should_prune():
raise optuna.exceptions.TrialPruned()
if trial:
torch.save(model, os.path.join(model_directory, 'trial-{}-model.pt'.format(trial.number)))
else:
torch.save(model, os.path.join(model_directory, 'model.pt'))
return val_ap
if __name__ == '__main__':
torch.cuda.empty_cache()
torch.manual_seed(0)
parser = argparse.ArgumentParser(description='')
parser.add_argument('--query_string', type=str)
parser.add_argument('--train_data', type=str, nargs='+')
parser.add_argument('--val_data', type=str, nargs='+')
parser.add_argument('--test_data', type=str, nargs='+')
parser.add_argument('--log_dir', type=str, default='runs/')
parser.add_argument('--aug', action='store_true', default=False)
parser.add_argument('--test', action='store_true', default=False)
parser.add_argument('--max_num_subquery_vars', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--val_epochs', type=int, default=25)
parser.add_argument('--base_dim', type=int, default=16)
parser.add_argument('--num_layers', type=int, default=4)
parser.add_argument('--epochs', type=int, default=250)
parser.add_argument('--learning_rate', type=float, default=0.01)
parser.add_argument('--negative_slope', type=float, default=0.1)
parser.add_argument('--positive_sample_weight', type=int, default=1)
parser.add_argument('--tune_param', action='store_true', default=False)
parser.add_argument('--gpu', action='store_true', default=False)
args = parser.parse_args()
if args.gpu:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
now = datetime.now()
date_time = now.strftime("%d_%m_%Y_%H:%M:%S")
current_directory = os.getcwd()
log_directory = os.path.join(current_directory, args.log_dir + date_time)
model_directory = os.path.join(log_directory, 'models')
if not os.path.exists(model_directory):
os.makedirs(model_directory)
# Loads data
if 'fb15k237' in args.train_data[0]:
train_samples, train_nodes, types, train_labels, train_masks, graphs = load_fb15k237_benchmark(args.train_data[0])
val_samples, val_nodes, types, val_labels, val_masks, graphs = load_fb15k237_benchmark(args.val_data[0])
else:
train_samples, train_nodes, types, train_labels, train_masks, graphs = load_watdiv_benchmark(args.train_data[0],
args.query_string)
val_samples, val_nodes, types, val_labels, val_masks, graphs = load_watdiv_benchmark(args.val_data[0], args.query_string)
# Augments the data
if args.aug:
subqueries, subquery_shape = generate_subqueries(query_string=args.query_string, max_num_subquery_vars=args.max_num_subquery_vars)
print('Training samples!')
train_data_objects = prep_data(labels=train_labels, sample_graphs=train_samples, nodes=train_nodes, masks=train_masks, device=device, aug=args.aug,
subqueries=subqueries, types=types)
print('Validation samples!')
val_data_objects = prep_data(labels=val_labels, sample_graphs=val_samples, nodes=val_nodes, masks=val_masks, device=device, aug=args.aug,
subqueries=subqueries, types=types)
rels = set()
for d in train_data_objects + val_data_objects:
for k in d.indices_dict.keys():
rels.add(k)
shapes_dict = {k: 1 for k in rels}
shapes_dict = {**shapes_dict, **subquery_shape}
else:
subqueries = None
print('Training samples!')
train_data_objects = prep_data(labels=train_labels, sample_graphs=train_samples, nodes=train_nodes, masks=train_masks, device=device, aug=args.aug,
subqueries=subqueries, types=types)
print('Validation samples!')
val_data_objects = prep_data(labels=val_labels, sample_graphs=val_samples, nodes=val_nodes, masks=val_masks, device=device, aug=args.aug,
subqueries=subqueries, types=types)
rels = set()
for d in train_data_objects + val_data_objects:
for k in d.indices_dict.keys():
rels.add(k)
shapes_dict = {k: 1 for k in rels}
feat_dim = len(train_data_objects[0].x[0])
# Starts the training loop
if not args.tune_param:
train(device=device, feat_dim=feat_dim, shapes_dict=shapes_dict, train_data=train_data_objects,
val_data=val_data_objects, log_directory=log_directory, model_directory=model_directory, subqueries=subqueries, args=args)
if args.test:
print('Start Testing!')
eval(test_data=args.test_data, model_directory=os.path.join(model_directory, 'model.pt'), aug=args.aug, device=device)
else:
study = optuna.create_study(direction='maximize', pruner=optuna.pruners.MedianPruner(
n_startup_trials=5, n_warmup_steps=30, interval_steps=1), sampler=RandomSampler(0))
study.optimize(lambda trial: train(trial=trial, device=device, feat_dim=feat_dim, shapes_dict=shapes_dict,
train_data=train_data_objects, val_data=val_data_objects,
log_directory=log_directory, model_directory=model_directory, subqueries=subqueries, args=args), n_trials=100, gc_after_trial=True)
pruned_trials = study.get_trials(deepcopy=False, states=[TrialState.PRUNED])
complete_trials = study.get_trials(deepcopy=False, states=[TrialState.COMPLETE])
print("Study statistics: ")
print(" Number of finished trials: ", len(study.trials))
print(" Number of pruned trials: ", len(pruned_trials))
print(" Number of complete trials: ", len(complete_trials))
trial = study.best_trial
print("Best trial is trial number {}".format(trial.number))
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))
if args.test:
with torch.no_grad():
print('Start Testing!')
eval(test_data=args.test_data, model_directory=os.path.join(model_directory, 'trial-{}-model.pt'.format(trial.number)), aug=args.aug, device=device)