-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate_DC.py
494 lines (439 loc) · 20.8 KB
/
evaluate_DC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import torch.optim.lr_scheduler
import pickle
import numpy as np
import torch.nn as nn
import torch
from sklearn.linear_model import LogisticRegression
from tqdm import tqdm
from FSLTask import load_dataset_driveact
use_gpu = torch.cuda.is_available()
import sklearn
import sys
from torch.utils.data import Dataset
from torchvision.transforms import ToTensor
from torchvision import datasets
from torch.utils.data import DataLoader
import random
SEED = 42
random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
np.random.seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
from sklearn.metrics import confusion_matrix
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
global nc
nc = 34
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
def random_feature_interpolation(selected_mean, query, k, num):
num_q = query.shape[0]
#print(num_q)
num_base = selected_mean.shape[0]
origin = np.random.choice(num_q, num)
target = np.random.choice(num_base, num)
alpha = np.stack([np.random.rand(num)]*1024, axis=-1)*0.07
#print(query[origin].shape,selected_mean[target].shape)
generated_feature = query[origin,:] + alpha*selected_mean[target,:]
#print(generated_feature.shape)
#sys.exit()
return generated_feature
def distribution_calibration(query, base_means, base_cov, k,alpha, num):
query = query.numpy()
dist = []
k=1
alpha=0.21
#print(query.shape)
for i in range(len(base_means)):
dist.append(np.linalg.norm(query-base_means[i]))
index = np.argpartition(dist, k)[:k]
#mean_basics = np.array(base_means)[index]
#print(mean_basics.shape)
#sys.exit()
selected_mean = np.array(base_means)[index]
mean = np.concatenate([np.array(base_means)[index], np.squeeze(query[np.newaxis, :])])
#mean = np.squeeze(query[np.newaxis, :])
calibrated_mean = np.mean(mean, axis=0)
calibrated_cov = np.mean(np.array(base_cov)[index], axis=0)+alpha
samples = random_feature_interpolation(selected_mean,query,k, num)
#print(calibrated_mean)
#print(calibrated_cov)
#feature interpolation based feature augmentation
return calibrated_mean, calibrated_cov, samples
class CustomImageDataset(Dataset):
def __init__(self, feature, annotation, transform=None, target_transform=None):
self.feature = feature #.view(-1,34)
#print(self.feature.shape)
#sys-exit()
self.annotations = annotation
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
return self.feature[idx], self.annotations[idx]
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(1024, 256)
self.attention = nn.Linear(256,128)
self.attention2 = nn.Linear(128, 256)
#self.pool = nn.MaxPool1d(128)
self.relu = nn.ReLU()
#self.bn = torch.nn.BatchNorm1d(128)
self.dropout = torch.nn.Dropout(p=0.5, inplace=False)
self.softmax = nn.Sigmoid()
#self.conv2 = nn.Conv2d(6, 16, 5)
# self.fc1 = nn.Linear(16 * 5 * 5, 120)
# self.fc2 = nn.Linear(120, 84)
self.fc2 = nn.Linear(256,nc)
self.fc3=nn.Linear(1024,nc)
def forward(self, x,y):
y = y.float()
x=self.fc1(x.float())
att = self.softmax(self.attention2(self.relu(self.attention(x))))
return self.fc2(self.relu(self.dropout(x+att*x))),self.fc3(y),
def calculate_samples_per_class(annotation):
class_index_max = nc
#print(annotation)
number_per_class = torch.zeros(int(class_index_max))
for i in range(class_index_max):
number_per_class[i] = (annotation == i).sum()
return number_per_class
def calculate_weights(annotation, weights):
class_index_max = nc
#number_per_class = torch.zeros(class_index_max)
sampler_weight = torch.zeros_like(annotation)
for i in range(class_index_max):
mask= annotation == i
sampler_weight[mask] = weights[i]
return sampler_weight
def generate_train(rare_data, rare_classes, rich_data, rich_classes,sample_num_per_class):
base_means = []
base_cov = []
for key in range(len(rich_data)):
feature = np.array(rich_data[key])
print(feature.shape)
mean = np.mean(feature, axis=0)
cov = np.cov(feature.T)
base_means.append(mean)
base_cov.append(cov)
# ---- classification for each task
acc_list = []
print('Start classification for %d tasks...'%(n_runs))
#support_data = ndatas[i][:n_lsamples].numpy()
#support_label = labels[i][:n_lsamples].numpy()
#query_data = ndatas[i][n_lsamples:].numpy()
#query_label = labels[i][n_lsamples:].numpy()
# ---- Tukey's transform
beta = 0.5
#support_data = np.power(support_data[:, ] ,beta)
#query_data = np.power(query_data[:, ] ,beta)
# ---- cross distribution calibration for rare classes
sampled_data = []
sampled_label = []
count = 0
np.set_printoptions(threshold=sys.maxsize)
#for i in range(len(rare_classes)):
# print(rare_data[i].shape)
for i in range(len(rare_classes)):
print(sample_num_per_class[i])
#if sample_num_per_class[rare_classes[i]] == 0:
# continue
num_sampled = 1000 #(int(torch.max(sample_num_per_class) - sample_num_per_class[rare_classes[i]]))
count += num_sampled
#print(rare_data[i].shape)
mean, cov, samples = distribution_calibration(rare_data[i], base_means, base_cov, 2, 0.21, 1000)
#print(num_sampled)
#print(samples.shape)
#print(cov)
sampled_data.append(samples)
#sampled_data.append(np.random.multivariate_normal(list(mean), list(cov), num_sampled, 'warn'))
#print(np.mean(sampled_data[i], axis=0))
#print(np.max(sampled_data[i], axis=0))
#val_data = feature_val[annotation_val==rare_classes[i]].numpy()
#print(val_data)
#print(np.mean(val_data, axis=0)-np.mean(sampled_data[i], axis=0))
sampled_label.extend([rare_classes[i]]*num_sampled)
#sampled_label.extend([rare_classes[i]] * int(sample_num_per_class[rare_classes[i]]))
#sys.exit()
#sys.exit()
sampled_data = np.concatenate(sampled_data).reshape(count, 1024)
rare_data = np.concatenate(rare_data, axis=0)
rare_label = []#torch.zeros(rare_data.shape[0])
for i in range(len(rare_classes)):
rare_label.extend([rare_classes[i]] * int(sample_num_per_class[rare_classes[i]]))
rare_label = np.array(rare_label)
X_aug_1 = sampled_data #np.concatenate([rare_data, sampled_data])
Y_aug_1 = sampled_label #np.concatenate([rare_label,sampled_label])
#print(X_aug_1.shape)
#print(Y_aug_1.shape)
# ---- self distribution calibration for rich classes
#num_sampled = int(750 / n_shot)
sampled_data = []
sampled_label = []
count = 0
for i in range(len(rich_classes)):
num_sampled = 1000 #int(torch.max(sample_num_per_class) - sample_num_per_class[rich_classes[i]])
#if sample_num_per_class>500:
# continue
count += num_sampled
#print(rich_classes[i])
#mean, conv, samples = base_means[i], base_cov[i]
#print(samples.shape)
mean, cov, samples = distribution_calibration(rich_data[i], base_means, base_cov, 2, 0.21, 1000)
#sampled_data.append(np.random.multivariate_normal(mean=mean, cov=cov, size=num_sampled))
sampled_data.append(samples)
sampled_label.extend([rich_classes[i]] * num_sampled)
#sampled_label.extend([rich_classes[i]] * int(sample_num_per_class[rich_classes[i]]))
sampled_data = np.concatenate(sampled_data).reshape(count, 1024)
rich_label = []#torch.zeros(rare_data.shape[0])
for i in range(len(rich_classes)):
rich_label.extend([rich_classes[i]] * int(sample_num_per_class[rich_classes[i]]))
rare_label = np.array(rich_label)
rich_data = np.concatenate(rich_data, axis=0)
X_aug_2 = sampled_data #rich_data #sampled_data #np.concatenate([rich_data, sampled_data])
Y_aug_2 = sampled_label #rich_label#sampled_label #np.concatenate([rich_label,sampled_label])
X_aug = np.concatenate([X_aug_1, X_aug_2])
Y_aug = np.concatenate([Y_aug_1, Y_aug_2])
#X_aug += np.random.normal(0, .1, X_aug.shape)
return X_aug, Y_aug
if __name__ == '__main__':
# ---- data loading
n_runs = 10000
import FSLTask
import torch.optim as optim
rare_data, rare_classes, rich_data, rich_classes, feature_val, annotation_val, feature_test, annotation_test, sample_num_per_class,rare_data_aug, rare_classes_aug, rich_data_aug, rich_classes_aug,sample_num_per_class_aug = load_dataset_driveact()
#acc = sklearn.metrics.top_k_accuracy_score(annotation_test, np.squeeze(feature_test), k=1)
#print(acc)
#noise_mean = np.zeros(34, 1024)
#print(len(rare_data)+len(rich_data))
#print(len(annotation_test))
#sys.exit()
#print(len(annotation_test))
#length= rare_classes.shape[0]+rich_data.shape[]
#cfg = {'shot': n_shot, 'ways': n_ways, 'queries': n_queries}
#FSLTask.loadDataSet(dataset)
#FSLTask.setRandomStates(cfg)
#rich_datas, rare_data = FSLTask.GenerateRunSet(end=n_runs, cfg=cfg)
#ndatas = ndatas.permute(0, 2, 1, 3).reshape(n_runs, n_samples, -1)
#labels = torch.arange(n_ways).view(1, 1, n_ways).expand(n_runs, n_shot + n_queries, 5).clone().view(n_runs, n_samples)
# ---- Base class statistics
#base_features_path = "./checkpoints/%s/WideResNet28_10_S2M2_R/last/base_features.plk"%dataset
X_aug, Y_aug = generate_train(rare_data,rare_classes,rich_data,rich_classes,sample_num_per_class)
X_aug2, Y_aug2 = generate_train(rare_data_aug,rare_classes_aug,rich_data_aug,rich_classes_aug,sample_num_per_class_aug)
#print(torch.Tensor(Y_aug))
X_aug = np.concatenate([X_aug, X_aug2])
Y_aug = np.concatenate([Y_aug, Y_aug2])
sample_number = calculate_samples_per_class(torch.Tensor(Y_aug))
#print(sample_number)
weights = 1/sample_number
#print(weights)
sampler_weight = calculate_weights(torch.Tensor(Y_aug), weights)
# ---- train classifier
#print(X_aug.shape)
#if mode == 'train':
# samples_weight = torch.from_numpy(np.array([weight[t] for t in dataset.gt_labels]))
#print(sampler_weight)
sampler = torch.utils.data.sampler.WeightedRandomSampler(sampler_weight,3000)
dataset_train = CustomImageDataset(X_aug, Y_aug)
#train_GAN(DataLoader(dataset_train, batch_size=256, sampler=sampler))
dataset_val = CustomImageDataset(np.squeeze(feature_val), annotation_val)
dataset_test = CustomImageDataset(np.squeeze(feature_test), annotation_test)
train_dataloader = DataLoader(dataset_train, batch_size=256, sampler=sampler)
infer_dataloader = DataLoader(dataset_train, batch_size=256, shuffle=False)
test_dataloader = DataLoader(dataset_test, batch_size=64, shuffle=False)
val_dataloader = DataLoader(dataset_val, batch_size=64, shuffle=False)
#model = LogisticRegression(max_iter=10000,verbose=10).fit(X=X_aug, y=Y_aug)
model = Net()
#resume = '/cvhci/temp/kpeng/driveact/models_swin_base/best_top1_acc_epoch_24.pth'
#checkpoint = torch.load(resume)
#print(checkpoint['state_dict']['cls_head.fc_cls.weight'])
#print(checkpoint['state_dict']['cls_head.fc_cls.bias'])
#model.fc1.weight.data = checkpoint['state_dict']['cls_head.fc_cls.weight']
#model.fc1.bias.data = checkpoint['state_dict']['cls_head.fc_cls.bias']
#sys.exit()
model=model.cuda()
criterion = nn.CrossEntropyLoss(reduce='None',reduction='mean')
criterion2 = nn.CrossEntropyLoss(reduce=False,reduction='none')
#optimizer = optim.SGD(model.parameters(), lr=0.0001, momentum=0.9)
#scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
optimizer = torch.optim.AdamW(model.parameters(), lr=0.000993, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01, amsgrad=False)
#optimizer = torch.optim.SGD(model.parameters(), 0.001,
# momentum=0.9,
# weight_decay=0.01)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5, eta_min=0, last_epoch=- 1, verbose=False)
#print(np.min(Y_aug))
#sys.exit()
#criterion2 = torch.nn.CosineEmbeddingLoss(margin=0.0, size_average=None, reduce=False,)
for epoch in range(1500):
hard_samples = []
model.train()
for step, (data,label) in enumerate(train_dataloader):
optimizer.zero_grad()
predicts,y = model(data.cuda(), data.cuda())
loss = criterion(predicts, label.cuda()) #+ criterion2(predicts,y, torch.ones(y.size()[0]).cuda())
loss.backward()
optimizer.step()
scheduler.step()
if (epoch > 50) and (epoch%30 == 0):
model.eval()
for index, (data, label) in enumerate(infer_dataloader):
with torch.no_grad():
#label = torch.Tensor(label).cuda().double()
predicts,y = model(data.cuda(), data.cuda())
#print(predicts.size())
difficulty = criterion2(predicts, label.cuda())
#print(difficulty)
hard_samples.append(difficulty.data)
#print(hard_samples)
difficulty = torch.cat(hard_samples, dim=0)
threshold = 1.2* torch.mean(difficulty)
mask = (difficulty>threshold).cpu().numpy()
hard_set = X_aug[mask]
hard_label = Y_aug[mask]
hard_dataset = CustomImageDataset(hard_set, hard_label)
hard_train_dataloader = DataLoader(hard_dataset, batch_size=256, shuffle=True)
for sub_epoch in range(1):
model.train()
for step, (data,label) in enumerate(hard_train_dataloader):
optimizer.zero_grad()
predicts,y = model(data.cuda(), data.cuda())
loss = 3*criterion(predicts, label.cuda()) #+ criterion2(predicts,y, torch.ones(y.size()[0]).cuda())
loss.backward()
optimizer.step()
#scheduler.step()
print(epoch, 'hard_loss', loss)
print(epoch, 'loss', loss)
val_predict = []
model.eval()
for step, (data,label) in enumerate(val_dataloader):
with torch.no_grad():
#data = torch.nn.functional.normalize(data, dim=-1)
predicts,y = model(data.cuda(), data.cuda())
val_predict.append(predicts.cpu())
val_predict = torch.cat(val_predict, dim=0).cpu().numpy()
test_predict = []
#val_predict = np.argmax(val_predict, axis=-1)
#print(predicts)
acc = sklearn.metrics.top_k_accuracy_score(annotation_val, val_predict, k=1)
f = open('/cvhci/data/activity/kpeng/ts_val_midlevel_predict_split0.pkl', 'wb')
pickle.dump(val_predict,f)
f.close()
f = open('/cvhci/data/activity/kpeng/ts_val_midlevel_label_split0.pkl', 'wb')
pickle.dump(annotation_val,f)
f.close()
print('two-stage calibration eval ACC : %f'%acc)
#predicts = model.predict(np.squeeze(feature_test))
cm = confusion_matrix(annotation_val, np.argmax(val_predict, axis=-1))
f = open("/cvhci/data/activity/Drive&Act/kunyu/annotation_list.pkl", 'rb')
annotation = []
class_index = pickle.load(f)
# We will store the results in a dictionary for easy access later
per_class_accuracies = {}
# Calculate the accuracy for each one of our classes
for idx, cls in enumerate(range(nc)):
# True negatives are all the samples that are not our current GT class (not the current row)
# and were not predicted as the current class (not the current column)
true_negatives = np.sum(np.delete(np.delete(cm, idx, axis=0), idx, axis=1))
# True positives are all the samples of our current GT class that were predicted as such
true_positives = cm[idx, idx]
# The accuracy for the current class is ratio between correct predictions to all predictions
per_class_accuracies[cls] = (true_positives + true_negatives) / np.sum(cm)
#print(class_index[idx], 'val_accuracy', per_class_accuracies[cls])
model.eval()
for step, (data,label) in enumerate(test_dataloader):
with torch.no_grad():
data = torch.nn.functional.normalize(data, dim=-1)
predicts,y = model(data.cuda(), data.cuda())
test_predict.append(predicts.cpu())
test_predict = torch.cat(test_predict, dim=0).cpu().numpy()
#print(np.squeeze(feature_test).shape)
#sys.exit()
#predicts = model.predict(np.squeeze(feature_val))
#predicts = np.argmax(predicts, axis=-1)
#test_predict = np.argmax(test_predict, axis=-1)
acc = sklearn.metrics.top_k_accuracy_score(annotation_test, test_predict, k=1)
f = open('/cvhci/data/activity/kpeng/ts_test_midlevel_predict_split0.pkl', 'wb')
pickle.dump(test_predict,f)
f.close()
f = open('/cvhci/data/activity/kpeng/ts_test_midlevel_label_split0.pkl', 'wb')
pickle.dump(annotation_test,f)
f.close()
print('two-stage calibration test ACC : %f' % acc)
#for i in range(34):
# mask = annotation_test == i
# acc = sklearn.metrics.top_k_accuracy_score(torch.argmax(annotation_test[mask], dim=-1), test_predict[mask], k=1)
# print('class', class_index[i], 'accuracy:', acc)
#filename = 'finalized_model.sav'
#pickle.dump(model, open(filename, 'wb'))
# Get the confusion matrix
cm = confusion_matrix(annotation_test, np.argmax(test_predict, axis=-1))
# We will store the results in a dictionary for easy access later
per_class_accuracies = {}
# Calculate the accuracy for each one of our classes
for idx, cls in enumerate(range(nc)):
# True negatives are all the samples that are not our current GT class (not the current row)
# and were not predicted as the current class (not the current column)
true_negatives = np.sum(np.delete(np.delete(cm, idx, axis=0), idx, axis=1))
# True positives are all the samples of our current GT class that were predicted as such
true_positives = cm[idx, idx]
# The accuracy for the current class is ratio between correct predictions to all predictions
per_class_accuracies[cls] = (true_positives + true_negatives) / np.sum(cm)
#print(class_index[idx], 'test_accuracy', per_class_accuracies[cls])
cm = confusion_matrix(annotation_test, np.argmax(feature_test, axis=-1))
# We will store the results in a dictionary for easy access later
per_class_accuracies = {}
# Calculate the accuracy for each one of our classes
for idx, cls in enumerate(range(nc)):
# True negatives are all the samples that are not our current GT class (not the current row)
# and were not predicted as the current class (not the current column)
true_negatives = np.sum(np.delete(np.delete(cm, idx, axis=0), idx, axis=1))
# True positives are all the samples of our current GT class that were predicted as such
true_positives = cm[idx, idx]
# The accuracy for the current class is ratio between correct predictions to all predictions
per_class_accuracies[cls] = (true_positives + true_negatives) / np.sum(cm)
#print(class_index[idx], 'test_accuracy', per_class_accuracies[cls])