-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_eth3d.py
237 lines (196 loc) · 10.4 KB
/
train_eth3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import hydra
import torch
from tqdm import tqdm
import torch.optim as optim
# from util import InputPadder
from core.utils.utils import InputPadder
from core.monster import Monster
from omegaconf import OmegaConf
import torch.nn.functional as F
from accelerate import Accelerator
import core.stereo_datasets as datasets
from accelerate.utils import set_seed
from accelerate.logging import get_logger
from accelerate import DataLoaderConfiguration
from accelerate.utils import DistributedDataParallelKwargs
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import wandb
from pathlib import Path
def check_nan(layer, input, output):
if isinstance(output, tuple): # 检查是否为元组
output = output[1][-1]
if torch.isnan(output).any():
print(f"NaN detected in {layer.__class__.__name__}")
def check_nan_grad(layer, grad_input, grad_output):
if isinstance(grad_input, tuple): # 检查是否为元组
grad_input = grad_input[0]
if torch.isnan(grad_input).any():
print(f"NaN detected in gradient of {layer.__class__.__name__}")
def gray_2_colormap_np(img, cmap = 'rainbow', max = None):
img = img.cpu().detach().numpy().squeeze()
assert img.ndim == 2
img[img<0] = 0
mask_invalid = img < 1e-10
if max == None:
img = img / (img.max() + 1e-8)
else:
img = img/(max + 1e-8)
norm = matplotlib.colors.Normalize(vmin=0, vmax=1.1)
cmap_m = matplotlib.cm.get_cmap(cmap)
map = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap_m)
colormap = (map.to_rgba(img)[:,:,:3]*255).astype(np.uint8)
colormap[mask_invalid] = 0
return colormap
def sequence_loss(disp_preds, disp_init_pred, disp_gt, valid, loss_gamma=0.9, max_disp=192):
""" Loss function defined over sequence of flow predictions """
n_predictions = len(disp_preds)
assert n_predictions >= 1
disp_loss = 0.0
mag = torch.sum(disp_gt**2, dim=1).sqrt()
valid = ((valid >= 0.5) & (mag < max_disp)).unsqueeze(1)
assert valid.shape == disp_gt.shape, [valid.shape, disp_gt.shape]
assert not torch.isinf(disp_gt[valid.bool()]).any()
# quantile = torch.quantile((disp_init_pred - disp_gt).abs(), 0.9)
init_valid = valid.bool() & ~torch.isnan(disp_init_pred)# & ((disp_init_pred - disp_gt).abs() < quantile)
disp_loss += 1.0 * F.smooth_l1_loss(disp_init_pred[init_valid], disp_gt[init_valid], reduction='mean')
for i in range(n_predictions):
adjusted_loss_gamma = loss_gamma**(15/(n_predictions - 1))
i_weight = adjusted_loss_gamma**(n_predictions - i - 1)
i_loss = (disp_preds[i] - disp_gt).abs()
# quantile = torch.quantile(i_loss, 0.9)
assert i_loss.shape == valid.shape, [i_loss.shape, valid.shape, disp_gt.shape, disp_preds[i].shape]
disp_loss += i_weight * i_loss[valid.bool() & ~torch.isnan(i_loss)].mean()
epe = torch.sum((disp_preds[-1] - disp_gt)**2, dim=1).sqrt()
epe = epe.view(-1)[valid.view(-1)]
if valid.bool().sum() == 0:
epe = torch.Tensor([0.0]).cuda()
metrics = {
'train/epe': epe.mean(),
'train/1px': (epe < 1).float().mean(),
'train/3px': (epe < 3).float().mean(),
'train/5px': (epe < 5).float().mean(),
}
return disp_loss, metrics
def fetch_optimizer(args, model):
""" Create the optimizer and learning rate scheduler """
DPT_params = list(map(id, model.feat_decoder.parameters()))
rest_params = filter(lambda x:id(x) not in DPT_params and x.requires_grad, model.parameters())
params_dict = [{'params': model.feat_decoder.parameters(), 'lr': args.lr/2.0},
{'params': rest_params, 'lr': args.lr}, ]
optimizer = optim.AdamW(params_dict, lr=args.lr, weight_decay=args.wdecay, eps=1e-8)
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, [args.lr/2.0, args.lr], args.total_step+100,
pct_start=0.01, cycle_momentum=False, anneal_strategy='linear')
return optimizer, scheduler
@hydra.main(version_base=None, config_path='config', config_name='train_eth3d')
def main(cfg):
set_seed(cfg.seed)
logger = get_logger(__name__)
Path(cfg.save_path).mkdir(exist_ok=True, parents=True)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(mixed_precision='bf16', dataloader_config=DataLoaderConfiguration(use_seedable_sampler=True), log_with='wandb', kwargs_handlers=[kwargs], step_scheduler_with_optimizer=False)
accelerator.init_trackers(project_name=cfg.project_name, config=OmegaConf.to_container(cfg, resolve=True), init_kwargs={'wandb': cfg.wandb})
train_dataset = datasets.fetch_dataloader(cfg)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=cfg.batch_size//cfg.num_gpu,
pin_memory=True, shuffle=True, num_workers=int(4), drop_last=True)
aug_params = {}
val_dataset = datasets.ETH3D(aug_params)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=int(1),
pin_memory=True, shuffle=False, num_workers=int(4), drop_last=False)
model = Monster(cfg)
if cfg.restore_ckpt is not None:
assert cfg.restore_ckpt.endswith(".pth")
print(f"Loading checkpoint from {cfg.restore_ckpt}")
assert os.path.exists(cfg.restore_ckpt)
checkpoint = torch.load(cfg.restore_ckpt, map_location='cpu')
ckpt = dict()
if 'state_dict' in checkpoint.keys():
checkpoint = checkpoint['state_dict']
for key in checkpoint:
ckpt[key.replace('module.', '')] = checkpoint[key]
model.load_state_dict(ckpt, strict=True)
print(f"Loaded checkpoint from {cfg.restore_ckpt} successfully")
del ckpt, checkpoint
optimizer, lr_scheduler = fetch_optimizer(cfg, model)
train_loader, model, optimizer, lr_scheduler, val_loader = accelerator.prepare(train_loader, model, optimizer, lr_scheduler, val_loader)
model.to(accelerator.device)
total_step = 0
should_keep_training = True
while should_keep_training:
active_train_loader = train_loader
model.train()
model.module.freeze_bn()
for data in tqdm(active_train_loader, dynamic_ncols=True, disable=not accelerator.is_main_process):
_, left, right, disp_gt, valid = [x for x in data]
with accelerator.autocast():
disp_init_pred, disp_preds, depth_mono = model(left, right, iters=cfg.train_iters)
loss, metrics = sequence_loss(disp_preds, disp_init_pred, disp_gt, valid, max_disp=cfg.max_disp)
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
total_step += 1
loss = accelerator.reduce(loss.detach(), reduction='mean')
metrics = accelerator.reduce(metrics, reduction='mean')
accelerator.log({'train/loss': loss, 'train/learning_rate': optimizer.param_groups[0]['lr']}, total_step)
accelerator.log(metrics, total_step)
####visualize the depth_mono and disp_preds
if total_step % 20 == 0 and accelerator.is_main_process:
image1_np = left[0].squeeze().cpu().numpy()
image1_np = (image1_np - image1_np.min()) / (image1_np.max() - image1_np.min()) * 255.0
image1_np = image1_np.astype(np.uint8)
image1_np = np.transpose(image1_np, (1, 2, 0))
image2_np = right[0].squeeze().cpu().numpy()
image2_np = (image2_np - image2_np.min()) / (image2_np.max() - image2_np.min()) * 255.0
image2_np = image2_np.astype(np.uint8)
image2_np = np.transpose(image2_np, (1, 2, 0))
depth_mono_np = gray_2_colormap_np(depth_mono[0].squeeze())
disp_preds_np = gray_2_colormap_np(disp_preds[-1][0].squeeze())
disp_gt_np = gray_2_colormap_np(disp_gt[0].squeeze())
accelerator.log({"disp_pred": wandb.Image(disp_preds_np, caption="step:{}".format(total_step))}, total_step)
accelerator.log({"disp_gt": wandb.Image(disp_gt_np, caption="step:{}".format(total_step))}, total_step)
accelerator.log({"depth_mono": wandb.Image(depth_mono_np, caption="step:{}".format(total_step))}, total_step)
if (total_step > 0) and (total_step % cfg.save_frequency == 0):
if accelerator.is_main_process:
save_path = Path(cfg.save_path + '/%d.pth' % (total_step))
model_save = accelerator.unwrap_model(model)
torch.save(model_save.state_dict(), save_path)
del model_save
if (total_step > 0) and (total_step % cfg.val_frequency == 0):
torch.cuda.empty_cache()
model.eval()
elem_num, total_epe, total_out = 0, 0, 0
for data in tqdm(val_loader, dynamic_ncols=True, disable=not accelerator.is_main_process):
_, left, right, disp_gt, valid = [x for x in data]
padder = InputPadder(left.shape, divis_by=32)
left, right = padder.pad(left, right)
with torch.no_grad():
disp_pred = model(left, right, iters=cfg.valid_iters, test_mode=True)
disp_pred = padder.unpad(disp_pred)
assert disp_pred.shape == disp_gt.shape, (disp_pred.shape, disp_gt.shape)
epe = torch.abs(disp_pred - disp_gt)
out = (epe > 1.0).float()
epe = torch.squeeze(epe, dim=1)
out = torch.squeeze(out, dim=1)
epe, out = accelerator.gather_for_metrics((epe[valid >= 0.5].mean(), out[valid >= 0.5].mean()))
elem_num += epe.shape[0]
for i in range(epe.shape[0]):
total_epe += epe[i]
total_out += out[i]
accelerator.log({'val/epe': total_epe / elem_num, 'val/d1': 100 * total_out / elem_num}, total_step)
model.train()
model.module.freeze_bn()
if total_step == cfg.total_step:
should_keep_training = False
break
if accelerator.is_main_process:
save_path = Path(cfg.save_path + '/final.pth')
model_save = accelerator.unwrap_model(model)
torch.save(model_save.state_dict(), save_path)
del model_save
accelerator.end_training()
if __name__ == '__main__':
main()