-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_fr.py
282 lines (226 loc) · 11.4 KB
/
train_fr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# import easydict
from multiprocessing import Process
import yaml
from pathlib import Path
import argparse
import torch
import tqdm
import numpy as np
import copy
# torch
import torchvision
from torchvision.models.detection import FasterRCNN
from torchvision.models.detection.rpn import AnchorGenerator
from torchvision.models import mobilenet_v2
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision import transforms
# from yolov5.train_dt import yolov5
from EfficientObjectDetection.train_new_reward import EfficientOD
# import fr_utils
import munch
import os
import utils
from utils import load_filenames, load_dataset, load_dataloader, compute_map, convert_yolo2coco, label2idx, label_matching, reduce_dict, make_results
opt = {'epochs':100,
'batch_size':12,
'device':1,
'test_epoch':10,
'eval_epoch':2,
'step_batch_size':100,
'save_path':'save',
'save_freq': 5,
'rl_weight':None,
'print_freq': 50,
'h_detector_weight':'',
'l_detector_weight':'',
'fine_tr':'config/fine_tr.yaml',
'fine_eval':'config/fine_eval.yaml',
'coarse_tr':'config/coarse_tr.yaml',
'coarse_eval':'config/coarse_eval.yaml',
'EfficientOD':'config/EfficientOD.yaml',
'split': 4}
opt = munch.AutoMunch(opt)
# GPU Device
gpu_id = opt.device
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
use_cuda = torch.cuda.is_available()
print("GPU device " , use_cuda)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# training option load from yaml files
with open(opt.fine_tr) as f:
fine_tr = yaml.load(f, Loader=yaml.FullLoader)
with open(opt.fine_eval) as f:
fine_eval = yaml.load(f, Loader=yaml.FullLoader)
with open(opt.coarse_tr) as f:
coarse_tr = yaml.load(f, Loader=yaml.FullLoader)
with open(opt.coarse_eval) as f:
coarse_eval = yaml.load(f, Loader=yaml.FullLoader)
with open(opt.EfficientOD) as f:
efficient_config = yaml.load(f, Loader=yaml.FullLoader)
efficient_config['load'] = None # bug fix
epochs = opt.epochs
bs = opt.batch_size
# fine_detector = yolov5(fine_tr, fine_eval, epochs, bs)
# coarse_detector = yolov5(coarse_tr, coarse_eval, epochs, bs)
rl_agent = EfficientOD(efficient_config)
split_train_path = '/home/SSDD/ICIP21_dataset/800_HRSID/split_data_4_0/rl_ver/train/images'
split_val_path = '/home/SSDD/ICIP21_dataset/800_HRSID/split_data_4_0/rl_ver/val/images'
split_test_path = '/home/SSDD/ICIP21_dataset/800_HRSID/split_data_4_0/rl_ver/test/images'
split = 4
original_img_path = '/home/SSDD/ICIP21_dataset/800_HRSID/origin_data/rl_ver/'
original_img_path_train = original_img_path + 'train/images'
original_img_path_val = original_img_path + 'val/images'
original_img_path_test = original_img_path + 'test/images'
assert bs % split == 0, 'batch size should be divided with image split patch size'
num_classes = 2
fine_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False, num_classes=num_classes, pretrained_backbone=False)
coarse_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False, num_classes=num_classes, pretrained_backbone=False)
# # # # replace the classifier with a new one, that has
# # # # num_classes which is user-defined
# # # get number of input features for the classifier
fine_in_features = fine_model.roi_heads.box_predictor.cls_score.in_features
coarse_in_features = coarse_model.roi_heads.box_predictor.cls_score.in_features
# # # replace the pre-trained head with a new one
fine_model.roi_heads.box_predictor = FastRCNNPredictor(fine_in_features, num_classes)
coarse_model.roi_heads.box_predictor = FastRCNNPredictor(coarse_in_features, num_classes)
for fine_p, coarse_p in zip(fine_model.parameters(), coarse_model.parameters()):
fine_p.requires_grad = True
coarse_p.requires_grad = True
fine_model.to(device)
coarse_model.to(device)
# Optimizer
fine_params = [p for p in fine_model.parameters() if p.requires_grad]
coarse_params = [p for p in coarse_model.parameters() if p.requires_grad]
fine_optim = torch.optim.SGD(fine_params, lr=0.005, momentum=0.9, weight_decay=0.0005)
coarse_optim = torch.optim.SGD(coarse_params, lr=0.005, momentum=0.9, weight_decay=0.0005)
fine_lr_scheduler = torch.optim.lr_scheduler.StepLR(fine_optim, step_size=50)
coarse_lr_scheduler = torch.optim.lr_scheduler.StepLR(coarse_optim, step_size=50)
for e in range(epochs):
# label이 없더라도 loader에 image 생성
train_imgs = load_filenames(split_train_path, split, bs).files_array()
fine_train_dataset = load_dataset(train_imgs, fine_tr, bs)
coarse_train_dataset = load_dataset(train_imgs, fine_tr, bs)
fine_train_loader = load_dataloader(bs, fine_train_dataset)
coarse_train_loader = load_dataloader(bs, coarse_train_dataset)
fine_train_nb = len(fine_train_loader)
coarse_train_nb = len(coarse_train_loader)
assert fine_train_nb == coarse_train_nb, 'fine & coarse train batch number is not matched'
nb = fine_train_nb
# Logger
fine_metric_logger = utils.MetricLogger(delimiter=" ")
fine_metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
coarse_metric_logger = utils.MetricLogger(delimiter=" ")
coarse_metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
fine_header = 'Fine Epoch: [{}]'.format(e)
coarse_header = 'Coarse Epoch: [{}]'.format(e)
# # warmup
fine_lr_scheduler = None
corase_lr_scheduler = None
if e == 0:
warmup_factor = 1. / 1000
warmup_iters = min(1000, fine_train_nb-1)
fine_lr_scheduler = utils.warmup_lr_scheduler(fine_optim, warmup_iters, warmup_factor)
coarse_lr_scheduler = utils.warmup_lr_scheduler(coarse_optim, warmup_iters, warmup_factor)
for i, (fine_train, coarse_train) in enumerate(zip(fine_train_loader, coarse_train_loader)):
# train
fine_model.train()
coarse_model.train()
#### fine train ###
# Label mathching
fine_imgs, fine_labels = label_matching(fine_train, device)
fine_imgs = fine_imgs.to(device) / 255.
## train: img normalization --> not, zerodivision err
fine_loss_dict = fine_model(fine_imgs, copy.deepcopy(fine_labels))
fine_losses = sum(loss for loss in fine_loss_dict.values())
fine_loss_dict_reduced = reduce_dict(fine_loss_dict)
fine_loss_reduced = sum(loss for loss in fine_loss_dict_reduced.values())
fine_loss_val = fine_loss_reduced.item()
# optimizer
fine_optim.zero_grad()
fine_losses.backward()
fine_optim.step()
if fine_lr_scheduler is not None:
fine_lr_scheduler.step()
fine_metric_logger.update(loss=fine_loss_reduced, **fine_loss_dict_reduced)
fine_metric_logger.update(lr=fine_optim.param_groups[0]["lr"])
if i % opt.print_freq ==0:
space_fmt = ':' + str(len(str(fine_train_nb))) + 'd'
log_msg = fine_metric_logger.delimiter.join([fine_header, '[{0' + space_fmt + '}/{1}]', '{meters}'])
print(log_msg.format(i, fine_train_nb, meters=str(fine_metric_logger)))
### coarse train ###
# Label mathching
coarse_imgs, coarse_labels = label_matching(coarse_train, device)
coarse_imgs = coarse_imgs.to(device) / 255.
## train: img normalization --> not, zerodivision err
coarse_loss_dict = coarse_model(coarse_imgs, copy.deepcopy(coarse_labels))
coarse_losses = sum(loss for loss in coarse_loss_dict.values())
# utils
coarse_loss_dict_reduced = reduce_dict(coarse_loss_dict)
coarse_loss_reduced = sum(loss for loss in coarse_loss_dict_reduced.values())
coarse_loss_val = coarse_loss_reduced.item()
# optimizer
coarse_optim.zero_grad()
coarse_losses.backward()
coarse_optim.step()
if coarse_lr_scheduler is not None:
coarse_lr_scheduler.step()
coarse_metric_logger.update(loss=coarse_loss_reduced, **coarse_loss_dict_reduced)
coarse_metric_logger.update(lr=fine_optim.param_groups[0]["lr"])
if i % opt.print_freq ==0:
space_fmt = ':' + str(len(str(fine_train_nb))) + 'd'
log_msg = coarse_metric_logger.delimiter.join([coarse_header, '[{0' + space_fmt + '}/{1}]', '{meters}'])
print(log_msg.format(i, fine_train_nb, meters=str(coarse_metric_logger)))
## train eval
# result = (source_path, paths[si], mp, mr, map50, nl, stats)
# file_name, od_file_dir, mp=0(skip), ma=0(skip), map50(will be soon), objnum, stat
# stat = 4
# make_results(model, dataset, device)
fine_results = make_results(fine_model, fine_train, device)
coarse_results = make_results(coarse_model, coarse_train, device)
# conf_thresh=0.001 / iou_thres=0.6
rl_agent.train(e, i, nb, fine_results, coarse_results, original_data_path=original_img_path_train)
## Validation
if e % 1 == 0:
fine_dataset, coarse_dataset, policies = rl_agent.eval(split_val_path, original_img_path_val)
print(len(fine_dataset.tolist()))
print(len(coarse_dataset.tolist()))
fine_results, coarse_results = [], []
if len(fine_dataset.tolist()) > 0:
fine_val_dataset = load_dataset(fine_dataset, fine_tr, bs)
fine_val_loader = load_dataloader(bs, fine_val_dataset)
fine_nb = len(fine_val_loader)
for i, fine_val in tqdm.tqdm(enumerate(fine_val_loader), total=fine_nb):
fine_results += make_results(fine_model, fine_val, device)
if len(coarse_dataset.tolist()) > 0:
coarse_val_dataset = load_dataset(coarse_dataset, fine_tr, bs)
coarse_val_loader = load_dataloader(bs, coarse_val_dataset)
coarse_nb = len(coarse_train_loader)
for i, coarse_val in tqdm.tqdm(enumerate(coarse_val_loader), total=coarse_nb):
coarse_results += make_results(coarse_model, coarse_val, device)
map50 = compute_map(fine_results, coarse_results)
print('Validation MAP: \n', map50)
# save
if e % opt.save_freq == 0:
torch.save(fine_model, os.path.join(opt.save, 'fine_model'))
torch.save(coarse_model, os.path.join(opt.save, 'coarse_model'))
# Testing
fine_dataset, coarse_dataset, policies = rl_agent.eval(split_test_path, original_img_path_test)
fine_results, coarse_results = [], []
if len(fine_dataset.tolist()) > 0:
fine_test_dataset = load_dataset(fine_dataset, fine_tr, bs)
fine_test_loader = load_dataloader(bs, fine_test_dataset)
fine_nb = len(fine_test_loader)
for i, fine_test in tqdm.tqdm(enumerate(fine_test_loader), total=fine_nb):
fine_results += make_results(fine_model, fine_test, device)
if len(coarse_dataset.tolist()) > 0:
coarse_test_dataset = load_dataset(coarse_dataset, fine_tr, bs)
coarse_test_loader = load_dataloader(bs, coarse_test_dataset)
coarse_nb = len(coarse_test_loader)
for i, coarse_test in tqdm.tqdm(enumerate(coarse_test_loader), total=coarse_nb):
coarse_results += make_results(coarse_model, coarse_test, device)
map50 = compute_map(fine_results, coarse_results)
print('MAP: \n', map50)
with open('test_result.txt', 'a') as f:
f.write(str(map50))
with open('test_policies.txt', 'a') as f:
f.write(str(policies))