-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
485 lines (401 loc) · 21.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# import easydict
from multiprocessing import Process
import yaml
from pathlib import Path
import argparse
import torch
import tqdm
import numpy as np
import time
import os
import utils
import copy
import easydict
# torch
import torchvision
from torchvision.models.detection import FasterRCNN
from torchvision.models.detection.rpn import AnchorGenerator
from torchvision.models import mobilenet_v2
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision import transforms
from yolov5.train_dt import yolov5
from EfficientObjectDetection.train_new_reward import EfficientOD
from utils import load_filenames, load_dataset, load_dataloader, compute_map, convert_yolo2coco, label2idx, label_matching, reduce_dict, make_results, make_results_test
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--batch_size', type=int, default=40, help="Total batch size for all gpus.")
parser.add_argument('--RL_batch_size', type=int, default=40, help="Total batch size for all gpus.")
parser.add_argument('--device', default='2', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--test_epoch', type=int, default=10)
parser.add_argument('--eval_epoch', type=int, default=1)
parser.add_argument('--split', type=int, default=4)
parser.add_argument('--split_format', nargs='*')
parser.add_argument('--split_train_path',
default='/home/SSDD/ICIP21_dataset/800_HRSID/split_data_4_80/rl_ver/train/images')
parser.add_argument('--split_val_path',
default='/home/SSDD/ICIP21_dataset/800_HRSID/split_data_4_80/rl_ver/val/images')
parser.add_argument('--split_test_path',
default='/home/SSDD/ICIP21_dataset/800_HRSID/split_data_4_80/rl_ver/test/images')
parser.add_argument('--original_img_path_train',
default='/home/SSDD/ICIP21_dataset/800_HRSID/origin_data/rl_ver/train/images')
parser.add_argument('--original_img_path_val',
default='/home/SSDD/ICIP21_dataset/800_HRSID/origin_data/rl_ver/val/images')
parser.add_argument('--original_img_path_test',
default='/home/SSDD/ICIP21_dataset/800_HRSID/origin_data/rl_ver/test/images')
parser.add_argument('--fine_img_size', nargs='+', type=int, default=[480, 480])
parser.add_argument('--coarse_img_size', nargs='+', type=int, default=[96, 96])
parser.add_argument('--model', default='yolov5')
parser.add_argument('--RL_train_start_epoch', type=int, default=5)
parser.add_argument('--save_path', type=str, default='save')
opt = parser.parse_args()
fine_tr = easydict.EasyDict({
"cfg": "yolov5/models/yolov5x_custom.yaml",
"data": "yolov5/data/HRSID_800_od.yaml",
"hyp": '',
"img_size": opt.fine_img_size,
"resume": False,
"bucket": '',
"cache_images": False,
"weights": '',
"save_path": opt.save_path,
"name": "yolo_fine",
"device": opt.device,
"multi_scale": False,
"single_cls": True,
"sync_bn": False,
"local_rank": -1
})
fine_eval = easydict.EasyDict({
"data": "yolov5/data/HRSID_800_rl.yaml",
"batch_size": opt.batch_size,
"conf_thres": 0.001,
"iou_thres": 0.6, # for NMS
"augment": False
})
coarse_tr = easydict.EasyDict({
"cfg": "yolov5/models/yolov5x_custom.yaml",
"data": "yolov5/data/HRSID_800_od.yaml",
"hyp": '',
"img_size": opt.coarse_img_size,
"resume": False,
"bucket": '',
"cache_images": False,
"weights": "",
"save_path": opt.save_path,
"name": "yolo_coarse",
"device": opt.device,
"multi_scale": False,
"single_cls": True,
"sync_bn": False,
"local_rank": -1
})
coarse_eval = easydict.EasyDict({
"data": "yolov5/data/HRSID_800_rl.yaml",
"batch_size": opt.batch_size,
"conf_thres": 0.001,
"iou_thres": 0.6, # for NMS
"augment": False
})
efficient_config = easydict.EasyDict({
"gpu_id": opt.device,
"lr": 1e-3,
"cv_dir": opt.save_path,
"save_name": 'yolo',
"batch_size": opt.batch_size,
"step_batch_size": opt.RL_batch_size,
"img_size": opt.fine_img_size,
"num_workers": 1,
"parallel": False,
"alpha": 0.8,
"beta": 0.1,
"sigma": 0.5,
"load": None,
"split": opt.split,
"split_format": opt.split_format,
"train_start": opt.RL_train_start_epoch
})
if opt.model == 'yolov5':
epochs = opt.epochs
bs = opt.batch_size
fine_detector = yolov5(fine_tr, fine_eval, epochs, bs)
coarse_detector = yolov5(coarse_tr, coarse_eval, epochs, bs)
rl_agent = EfficientOD(efficient_config)
split_train_path = opt.split_train_path
split_val_path = opt.split_val_path
split_test_path = opt.split_test_path
split = opt.split
original_img_path_train = opt.original_img_path_train
original_img_path_val = opt.original_img_path_val
original_img_path_test = opt.original_img_path_test
assert bs % split == 0, 'batch size should be divided with image split patch size'
# Training
train_imgs = load_filenames(split_train_path, split, bs).files_array()
fine_train_dataset = load_dataset(train_imgs, fine_tr, bs)
coarse_train_dataset = load_dataset(train_imgs, coarse_tr, bs)
for e in range(epochs):
print('Starting training for %g epochs...' % e)
fine_train_loader = load_dataloader(bs, fine_train_dataset)
coarse_train_loader = load_dataloader(bs, coarse_train_dataset)
fine_train_nb = len(fine_train_loader)
coarse_train_nb = len(coarse_train_loader)
assert fine_train_nb == coarse_train_nb, 'fine & coarse train batch number is not matched'
nb = fine_train_nb
for i, (fine_train, coarse_train) in tqdm.tqdm(enumerate(zip(fine_train_loader, coarse_train_loader)),
total=fine_train_nb):
fine_detector.train(e, i + 1, nb, fine_train_dataset, fine_train)
coarse_detector.train(e, i + 1, nb, coarse_train_dataset, coarse_train)
# result = (source_path, paths[si], mp, mr, map50, nl, stats)
fine_results = fine_detector.eval(fine_train)
coarse_results = coarse_detector.eval(coarse_train)
rl_agent.train(e, i + 1, nb, fine_results, coarse_results, original_img_path_train)
# Validation
if e % 1 == 0:
fine_dataset, coarse_dataset, policies = rl_agent.eval(split_val_path, original_img_path_val)
fine_results, coarse_results = [], []
s_time = time.time()
print('len(fine_dataset.tolist()): \n', len(fine_dataset.tolist()))
if len(fine_dataset.tolist()) > 0:
fine_val_dataset = load_dataset(fine_dataset, fine_tr, bs)
fine_val_loader = load_dataloader(bs, fine_val_dataset)
fine_nb = len(fine_val_loader)
for i, fine_val in tqdm.tqdm(enumerate(fine_val_loader), total=fine_nb):
for j in fine_detector.test(fine_val):
fine_results.append(j)
print('len(coarse_dataset.tolist()): \n', len(coarse_dataset.tolist()))
if len(coarse_dataset.tolist()) > 0:
coarse_val_dataset = load_dataset(coarse_dataset, coarse_tr, bs)
coarse_val_loader = load_dataloader(bs, coarse_val_dataset)
coarse_nb = len(coarse_val_loader)
for i, coarse_val in tqdm.tqdm(enumerate(coarse_val_loader), total=coarse_nb):
for j in coarse_detector.test(coarse_val):
coarse_results.append(j)
map50 = compute_map(fine_results, coarse_results)
print('Validation mAP: \n', map50)
print('Validation find mAP: \n', compute_map(fine_results, []))
print('Validation coarse mAP: \n', compute_map([], coarse_results))
print('Time for validation: \n', time.time() - s_time)
with open(opt.save_path + '/val_result.txt', 'a') as f:
f.write(str(map50) + '\n')
eff = 0
for i in policies:
eff += int(i)
with open(opt.save_path + '/val_policies.txt', 'a') as f:
f.write(str(eff / len(policies)) + '\n')
# Testing
fine_dataset, coarse_dataset, policies = rl_agent.eval(split_test_path, original_img_path_test)
fine_results, coarse_results = [], []
if len(fine_dataset.tolist()) > 0:
fine_test_dataset = load_dataset(fine_dataset, fine_tr, bs)
fine_test_loader = load_dataloader(bs, fine_test_dataset)
fine_nb = len(fine_test_loader)
for i, fine_test in tqdm.tqdm(enumerate(fine_test_loader), total=fine_nb):
for j in fine_detector.test(fine_test):
fine_results.append(j)
if len(coarse_dataset.tolist()) > 0:
coarse_test_dataset = load_dataset(coarse_dataset, coarse_tr, bs)
coarse_test_loader = load_dataloader(bs, coarse_test_dataset)
coarse_nb = len(coarse_test_loader)
for i, coarse_test in tqdm.tqdm(enumerate(coarse_test_loader), total=coarse_nb):
for j in coarse_detector.test(coarse_test):
coarse_results.append(j)
map50 = compute_map(fine_results, coarse_results)
print('Test mAP: \n', map50)
print('Test find mAP: \n', compute_map(fine_results, []))
print('Test coarse mAP: \n', compute_map([], coarse_results))
with open(opt.save_path + '/test_result.txt', 'a') as f:
f.write(str(map50) + '\n')
eff = 0
for i in policies:
eff += int(i)
with open(opt.save_path + '/test_policies.txt', 'a') as f:
f.write(str(eff / len(policies)) + '\n')
elif opt.model == 'faster_rcnn':
# GPU Device
gpu_id = opt.device
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
use_cuda = torch.cuda.is_available()
print("GPU device ", use_cuda)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
efficient_config['load'] = None # bug fix
epochs = opt.epochs
bs = opt.batch_size
rl_agent = EfficientOD(efficient_config)
split_train_path = opt.split_train_path
split_val_path = opt.split_val_path
split_test_path = opt.split_test_path
split = opt.split
original_img_path_train = opt.original_img_path_train
original_img_path_val = opt.original_img_path_val
original_img_path_test = opt.original_img_path_test
assert bs % split == 0, 'batch size should be divided with image split patch size'
num_classes = 2
fine_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False, num_classes=num_classes,
pretrained_backbone=False)
coarse_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False, num_classes=num_classes,
pretrained_backbone=False)
# # # # replace the classifier with a new one, that has
# # # # num_classes which is user-defined
# # # get number of input features for the classifier
fine_in_features = fine_model.roi_heads.box_predictor.cls_score.in_features
coarse_in_features = coarse_model.roi_heads.box_predictor.cls_score.in_features
# # # replace the pre-trained head with a new one
fine_model.roi_heads.box_predictor = FastRCNNPredictor(fine_in_features, num_classes)
coarse_model.roi_heads.box_predictor = FastRCNNPredictor(coarse_in_features, num_classes)
for fine_p, coarse_p in zip(fine_model.parameters(), coarse_model.parameters()):
fine_p.requires_grad = True
coarse_p.requires_grad = True
fine_model.to(device)
coarse_model.to(device)
# Optimizer
fine_params = [p for p in fine_model.parameters() if p.requires_grad]
coarse_params = [p for p in coarse_model.parameters() if p.requires_grad]
fine_optim = torch.optim.SGD(fine_params, lr=0.005, momentum=0.9, weight_decay=0.0005)
coarse_optim = torch.optim.SGD(coarse_params, lr=0.005, momentum=0.9, weight_decay=0.0005)
fine_lr_scheduler = torch.optim.lr_scheduler.StepLR(fine_optim, step_size=50)
coarse_lr_scheduler = torch.optim.lr_scheduler.StepLR(coarse_optim, step_size=50)
# label이 없더라도 loader에 image 생성
train_imgs = load_filenames(split_train_path, split, bs).files_array()
fine_train_dataset = load_dataset(train_imgs, fine_tr, bs)
coarse_train_dataset = load_dataset(train_imgs, coarse_tr, bs)
for e in range(epochs):
print('Starting training for %g epochs...' % e)
fine_train_loader = load_dataloader(bs, fine_train_dataset)
coarse_train_loader = load_dataloader(bs, coarse_train_dataset)
fine_train_nb = len(fine_train_loader)
coarse_train_nb = len(coarse_train_loader)
assert fine_train_nb == coarse_train_nb, 'fine & coarse train batch number is not matched'
nb = fine_train_nb
# Logger
fine_metric_logger = utils.MetricLogger(delimiter=" ")
fine_metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
coarse_metric_logger = utils.MetricLogger(delimiter=" ")
coarse_metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
fine_header = 'Fine Epoch: [{}]'.format(e)
coarse_header = 'Coarse Epoch: [{}]'.format(e)
# # warmup
fine_lr_scheduler = None
corase_lr_scheduler = None
if e == 0:
warmup_factor = 1. / 1000
warmup_iters = min(1000, fine_train_nb - 1)
fine_lr_scheduler = utils.warmup_lr_scheduler(fine_optim, warmup_iters, warmup_factor)
coarse_lr_scheduler = utils.warmup_lr_scheduler(coarse_optim, warmup_iters, warmup_factor)
for i, (fine_train, coarse_train) in enumerate(zip(fine_train_loader, coarse_train_loader)):
# train
fine_model.train()
coarse_model.train()
#### fine train ###
# Label mathching
fine_imgs, fine_labels = label_matching(fine_train, device)
fine_imgs = fine_imgs.to(device) / 255.
## train: img normalization --> not, zerodivision err
fine_loss_dict = fine_model(fine_imgs, copy.deepcopy(fine_labels))
fine_losses = sum(loss for loss in fine_loss_dict.values())
fine_loss_dict_reduced = reduce_dict(fine_loss_dict)
fine_loss_reduced = sum(loss for loss in fine_loss_dict_reduced.values())
fine_loss_val = fine_loss_reduced.item()
# optimizer
fine_optim.zero_grad()
fine_losses.backward()
fine_optim.step()
if fine_lr_scheduler is not None:
fine_lr_scheduler.step()
fine_metric_logger.update(loss=fine_loss_reduced, **fine_loss_dict_reduced)
fine_metric_logger.update(lr=fine_optim.param_groups[0]["lr"])
if i % 50 == 0:
space_fmt = ':' + str(len(str(fine_train_nb))) + 'd'
log_msg = fine_metric_logger.delimiter.join([fine_header, '[{0' + space_fmt + '}/{1}]', '{meters}'])
print(log_msg.format(i, fine_train_nb, meters=str(fine_metric_logger)))
### coarse train ###
# Label mathching
coarse_imgs, coarse_labels = label_matching(coarse_train, device)
coarse_imgs = coarse_imgs.to(device) / 255.
## train: img normalization --> not, zerodivision err
coarse_loss_dict = coarse_model(coarse_imgs, copy.deepcopy(coarse_labels))
coarse_losses = sum(loss for loss in coarse_loss_dict.values())
# utils
coarse_loss_dict_reduced = reduce_dict(coarse_loss_dict)
coarse_loss_reduced = sum(loss for loss in coarse_loss_dict_reduced.values())
coarse_loss_val = coarse_loss_reduced.item()
# optimizer
coarse_optim.zero_grad()
coarse_losses.backward()
coarse_optim.step()
if coarse_lr_scheduler is not None:
coarse_lr_scheduler.step()
coarse_metric_logger.update(loss=coarse_loss_reduced, **coarse_loss_dict_reduced)
coarse_metric_logger.update(lr=fine_optim.param_groups[0]["lr"])
# if i % opt.print_freq == 0:
if i % 50 == 0:
space_fmt = ':' + str(len(str(fine_train_nb))) + 'd'
log_msg = coarse_metric_logger.delimiter.join(
[coarse_header, '[{0' + space_fmt + '}/{1}]', '{meters}'])
print(log_msg.format(i, fine_train_nb, meters=str(coarse_metric_logger)))
## train eval
# result = (source_path, paths[si], mp, mr, map50, nl, stats)
# file_name, od_file_dir, mp=0(skip), ma=0(skip), map50(will be soon), objnum, stat
# stat = 4
# make_results(model, dataset, device)
fine_results = make_results(fine_model, fine_train, device)
coarse_results = make_results(coarse_model, coarse_train, device)
# conf_thresh=0.001 / iou_thres=0.6
rl_agent.train(e, i+1, nb, fine_results, coarse_results, original_data_path=original_img_path_train)
## Validation
if e % 1 == 0:
fine_dataset, coarse_dataset, policies = rl_agent.eval(split_val_path, original_img_path_val)
fine_results, coarse_results = [], []
if len(fine_dataset.tolist()) > 0:
fine_val_dataset = load_dataset(fine_dataset, fine_tr, bs)
fine_val_loader = load_dataloader(bs, fine_val_dataset)
fine_nb = len(fine_val_loader)
for i, fine_val in tqdm.tqdm(enumerate(fine_val_loader), total=fine_nb):
fine_results += make_results_test(fine_model, fine_val, device)
if len(coarse_dataset.tolist()) > 0:
coarse_val_dataset = load_dataset(coarse_dataset, fine_tr, bs)
coarse_val_loader = load_dataloader(bs, coarse_val_dataset)
coarse_nb = len(coarse_val_loader)
for i, coarse_val in tqdm.tqdm(enumerate(coarse_val_loader), total=coarse_nb):
coarse_results += make_results(coarse_model, coarse_val, device)
map50 = compute_map(fine_results, coarse_results)
print('Validation MAP: \n', map50)
print('Validation find mAP: \n', compute_map(fine_results, []))
print('Validation coarse mAP: \n', compute_map([], coarse_results))
with open(opt.save_path + '/val_result_faster.txt', 'a') as f:
f.write(str(map50))
eff = 0
for i in policies:
eff += int(i)
with open(opt.save_path + '/val_policies_faster.txt', 'a') as f:
f.write(str(eff / len(policies)) + '\n')
# save
if e % 1 == 0:
os.makedirs(opt.save_path, exist_ok=True)
torch.save(fine_model, os.path.join(opt.save_path, 'fine_model_{}'.format(e)))
torch.save(coarse_model, os.path.join(opt.save_path, 'coarse_model_{}'.format(e)))
# Testing
fine_dataset, coarse_dataset, policies = rl_agent.eval(split_test_path, original_img_path_test)
fine_results, coarse_results = [], []
if len(fine_dataset.tolist()) > 0:
fine_test_dataset = load_dataset(fine_dataset, fine_tr, bs)
fine_test_loader = load_dataloader(bs, fine_test_dataset)
fine_nb = len(fine_test_loader)
for i, fine_test in tqdm.tqdm(enumerate(fine_test_loader), total=fine_nb):
fine_results += make_results(fine_model, fine_test, device)
if len(coarse_dataset.tolist()) > 0:
coarse_test_dataset = load_dataset(coarse_dataset, fine_tr, bs)
coarse_test_loader = load_dataloader(bs, coarse_test_dataset)
coarse_nb = len(coarse_test_loader)
for i, coarse_test in tqdm.tqdm(enumerate(coarse_test_loader), total=coarse_nb):
coarse_results += make_results(coarse_model, coarse_test, device)
map50 = compute_map(fine_results, coarse_results)
print('MAP: \n', map50)
print('Test find mAP: \n', compute_map(fine_results, []))
print('Test coarse mAP: \n', compute_map([], coarse_results))
with open(opt.save_path + '/test_result_faster.txt', 'a') as f:
f.write(str(map50))
eff = 0
for i in policies:
eff += int(i)
with open(opt.save_path + '/test_policies_faster.txt', 'a') as f:
f.write(str(eff / len(policies)) + '\n')