-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathintfuncs.jl
635 lines (560 loc) · 24.5 KB
/
intfuncs.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
# This file is a part of Julia. License is MIT: https://julialang.org/license
using Random
is_effect_free(args...) = Core.Compiler.is_effect_free(Base.infer_effects(args...))
⟷(a::T, b::T) where T <: Union{Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128} = a === b
⟷(a::T, b::T) where T <: BigInt = a == b
@testset "gcd/lcm" begin
# All Integer data types take different code paths -- test all
for T in (Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128, BigInt)
@test gcd(T(3)) ⟷ T(3)
@test gcd(T(3), T(5)) ⟷ T(1)
@test gcd(T(3), T(15)) ⟷ T(3)
@test gcd(T(0), T(15)) ⟷ T(15)
@test gcd(T(15), T(0)) ⟷ T(15)
if T <: Signed
@test gcd(T(-12)) ⟷ T(12)
@test gcd(T(0), T(-15)) ⟷ T(15)
@test gcd(T(-15), T(0)) ⟷ T(15)
@test gcd(T(3), T(-15)) ⟷ T(3)
@test gcd(T(-3), T(-15)) ⟷ T(3)
end
@test gcd(T(0), T(0)) ⟷ T(0)
@test gcd(T(2), T(4), T(6)) ⟷ T(2)
if T <: Signed
@test gcd(T(2), T(4), T(-6)) ⟷ T(2)
@test gcd(T(2), T(-4), T(-6)) ⟷ T(2)
@test gcd(T(-2), T(4), T(-6)) ⟷ T(2)
@test gcd(T(-2), T(-4), T(-6)) ⟷ T(2)
end
if T != BigInt
@test gcd(typemax(T), T(1)) === T(1)
@test gcd(T(1), typemax(T)) === T(1)
@test gcd(typemax(T), T(0)) === typemax(T)
@test gcd(T(0), typemax(T)) === typemax(T)
@test gcd(typemax(T), typemax(T)) === typemax(T)
@test gcd(typemax(T), typemax(T)-T(1)) === T(1) # gcd(n, n-1) = 1. n and n-1 are always coprime.
end
if T <: Signed && T != BigInt
@test gcd(-typemax(T), T(1)) === T(1)
@test gcd(T(1), -typemax(T)) === T(1)
@test gcd(-typemax(T), T(0)) === typemax(T)
@test gcd(T(0), -typemax(T)) === typemax(T)
@test gcd(-typemax(T), -typemax(T)) === typemax(T)
@test gcd(typemax(T), -typemax(T)) === typemax(T)
@test gcd(-typemax(T), typemax(T)) === typemax(T)
@test gcd(typemin(T), T(1)) === T(1)
@test gcd(T(1), typemin(T)) === T(1)
@test gcd(typemin(T), typemin(T)+T(1)) === T(1) # gcd(n, n+1) = 1. n and n+1 are always coprime.
@test_throws OverflowError gcd(typemin(T), typemin(T))
@test_throws OverflowError gcd(typemin(T), T(0))
@test_throws OverflowError gcd(T(0), typemin(T))
elseif T != BigInt
# For Unsigned Integer types, -typemax(T) == 1.
@test gcd(-typemax(T), T(1)) === T(1)
@test gcd(T(1), -typemax(T)) === T(1)
@test gcd(-typemax(T), T(0)) === T(1)
@test gcd(T(0), -typemax(T)) === T(1)
@test gcd(-typemax(T), -typemax(T)) === T(1)
@test gcd(-typemax(T), typemax(T)) === T(1)
@test gcd(typemax(T), -typemax(T)) === T(1)
# For Unsigned Integer types, typemin(T) == 0.
@test gcd(typemin(T), T(1)) === T(1)
@test gcd(T(1), typemin(T)) === T(1)
@test gcd(typemin(T), typemin(T)+T(1)) === T(1) # gcd(n, n+1) = 1. n and n+1 are always coprime.
@test gcd(typemin(T), typemin(T)) === T(0)
@test gcd(typemin(T), T(0)) === T(0)
@test gcd(T(0), typemin(T)) === T(0)
end
@test lcm(T(0)) ⟷ T(0)
@test lcm(T(2)) ⟷ T(2)
@test lcm(T(2), T(3)) ⟷ T(6)
@test lcm(T(3), T(2)) ⟷ T(6)
@test lcm(T(4), T(6)) ⟷ T(12)
@test lcm(T(6), T(4)) ⟷ T(12)
@test lcm(T(3), T(0)) ⟷ T(0)
@test lcm(T(0), T(3)) ⟷ T(0)
@test lcm(T(0), T(0)) ⟷ T(0)
if T <: Signed
@test lcm(T(-12)) ⟷ T(12)
@test lcm(T(0), T(-4)) ⟷ T(0)
@test lcm(T(-4), T(0)) ⟷ T(0)
@test lcm(T(4), T(-6)) ⟷ T(12)
@test lcm(T(-4), T(-6)) ⟷ T(12)
end
@test lcm(T(2), T(4), T(6)) ⟷ T(12)
@test lcm(T(2), T(4), T(0)) ⟷ T(0)
if T <: Signed
@test lcm(T(2), T(4), T(-6)) ⟷ T(12)
@test lcm(T(2), T(-4), T(-6)) ⟷ T(12)
@test lcm(T(-2), T(-4), T(-6)) ⟷ T(12)
@test lcm(T(-2), T(0), T(-6)) ⟷ T(0)
end
if T != BigInt
@test lcm(typemax(T), T(1)) === typemax(T)
@test lcm(T(1), typemax(T)) === typemax(T)
@test lcm(typemax(T), T(0)) === T(0)
@test lcm(T(0), typemax(T)) === T(0)
@test lcm(typemax(T), typemax(T)) === typemax(T)
@test_throws OverflowError lcm(typemax(T), typemax(T)-T(1)) # lcm(n, n-1) = n*(n-1). Since n and n-1 are always coprime.
@test_throws OverflowError lcm(typemax(T), T(2))
let x = isqrt(typemax(T))+T(1) # smallest number x such that x^2 > typemax(T)
@test lcm(x, x) === x
@test_throws OverflowError lcm(x, x+T(1)) # lcm(n, n+1) = n*(n+1). Since n and n+1 are always coprime.
end
if T <: Signed
@test lcm(-typemax(T), T(1)) === typemax(T)
@test lcm(T(1), -typemax(T)) === typemax(T)
@test lcm(-typemax(T), T(0)) === T(0)
@test lcm(T(0), -typemax(T)) === T(0)
@test lcm(-typemax(T), -typemax(T)) === typemax(T)
@test lcm(typemax(T), -typemax(T)) === typemax(T)
@test lcm(-typemax(T), typemax(T)) === typemax(T)
@test_throws OverflowError lcm(typemin(T), T(1))
@test_throws OverflowError lcm(T(1), typemin(T))
@test lcm(typemin(T), T(0)) === T(0)
@test lcm(T(0), typemin(T)) === T(0)
@test_throws OverflowError lcm(typemin(T), typemin(T)+T(1)) # lcm(n, n+1) = n*(n+1).
@test_throws OverflowError lcm(typemin(T), typemin(T))
else
# For Unsigned Integer types, -typemax(T) == 1.
@test lcm(-typemax(T), T(1)) === T(1)
@test lcm(T(1), -typemax(T)) === T(1)
@test lcm(-typemax(T), T(0)) === T(0)
@test lcm(T(0), -typemax(T)) === T(0)
@test lcm(-typemax(T), -typemax(T)) === T(1)
@test lcm(-typemax(T), typemax(T)) === typemax(T)
@test lcm(typemax(T), -typemax(T)) === typemax(T)
# For Unsigned Integer types, typemin(T) == 0.
@test lcm(typemin(T), T(1)) === lcm(T(0), T(1)) === T(0)
@test lcm(T(1), typemin(T)) === T(0)
@test lcm(typemin(T), T(0)) === T(0)
@test lcm(T(0), typemin(T)) === T(0)
@test lcm(typemin(T), typemin(T)) === T(0)
@test lcm(typemin(T), typemin(T)+T(1)) === T(0)
end
end
end
@test lcm(0x5, 3) == 15
@test gcd(0xf, 20) == 5
@test gcd(UInt32(6), Int8(-50)) == 2
@test gcd(typemax(UInt), -16) == 1
@test gcd(typemax(UInt), BigInt(1236189723689716298376189726398761298361892)) == 1
@testset "effects" begin
@test is_effect_free(gcd, Tuple{Int,Int})
@test is_effect_free(lcm, Tuple{Int,Int})
end
end
@testset "gcd/lcm for arrays" begin
for T in (Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128, BigInt)
@test gcd(T[]) ⟷ T(0)
@test gcd(T[3, 5]) ⟷ T(1)
@test gcd(T[3, 15]) ⟷ T(3)
@test gcd(T[0, 15]) ⟷ T(15)
if T <: Signed
@test gcd(T[-12]) ⟷ T(12)
@test gcd(T[3,-15]) ⟷ T(3)
@test gcd(T[-3,-15]) ⟷ T(3)
end
@test gcd(T[0, 0]) ⟷ T(0)
@test gcd(T[2, 4, 6]) ⟷ T(2)
@test gcd(T[2, 4, 3, 5]) ⟷ T(1)
@test lcm(T[]) ⟷ T(1)
@test lcm(T[2, 3]) ⟷ T(6)
@test lcm(T[4, 6]) ⟷ T(12)
@test lcm(T[3, 0]) ⟷ T(0)
@test lcm(T[0, 0]) ⟷ T(0)
if T <: Signed
@test lcm(T[-2]) ⟷ T(2)
@test lcm(T[4, -6]) ⟷ T(12)
@test lcm(T[-4, -6]) ⟷ T(12)
end
@test lcm(T[2, 4, 6]) ⟷ T(12)
end
end
⟷(a::Tuple{T, T, T}, b::Tuple{T, T, T}) where T <: Union{Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128} = a === b
⟷(a::Tuple{T, T, T}, b::Tuple{T, T, T}) where T <: BigInt = a == b
@testset "gcdx" begin
for T in (Int8, Int16, Int32, Int64, Int128, BigInt)
@test gcdx(T(5), T(12)) ⟷ (T(1), T(5), T(-2))
@test gcdx(T(5), T(-12)) ⟷ (T(1), T(5), T(2))
@test gcdx(T(-5), T(12)) ⟷ (T(1), T(-5), T(-2))
@test gcdx(T(-5), T(-12)) ⟷ (T(1), T(-5), T(2))
@test gcdx(T(-25), T(-4)) ⟷ (T(1), T(-1), T(6))
@test gcdx(T(0), T(0)) ⟷ (T(0), T(0), T(0))
@test gcdx(T(8), T(0)) ⟷ (T(8), T(1), T(0))
@test gcdx(T(0), T(-8)) ⟷ (T(8), T(0), T(-1))
end
x, y = Int8(-12), UInt(100)
d, u, v = gcdx(x, y)
@test x*u + y*v == d
end
@testset "gcd/lcm/gcdx for custom types" begin
struct MyRational <: Real
val::Rational{Int}
end
Base.promote_rule(::Type{MyRational}, T::Type{<:Real}) = promote_type(Rational{Int}, T)
(T::Type{<:Real})(x::MyRational) = T(x.val)
@test gcd(MyRational(2//3), 3) == gcd(2//3, 3) == gcd(Real[MyRational(2//3), 3])
@test lcm(MyRational(2//3), 3) == lcm(2//3, 3) == lcm(Real[MyRational(2//3), 3])
@test gcdx(MyRational(2//3), 3) == gcdx(2//3, 3)
# test error path
struct MyOtherRational <: Real
val::Rational{Int}
end
@test_throws MethodError gcd(MyOtherRational(2//3), MyOtherRational(3//4))
@test_throws MethodError lcm(MyOtherRational(2//3), MyOtherRational(3//4))
@test_throws MethodError gcdx(MyOtherRational(2//3), MyOtherRational(3//4))
end
@testset "invmod(n, m)" begin
@test invmod(6, 31) === 26
@test invmod(-1, 3) === 2
@test invmod(1, -3) === -2
@test invmod(-1, -3) === -1
@test invmod(0x2, 0x3) === 0x2
@test invmod(2, 0x3) === UInt(2)
@test invmod(0x8, -3) === -1
@test_throws DomainError invmod(0, 3)
# For issue 29971
@test invmod(UInt8(1), typemax(UInt8)) === 0x01
@test invmod(UInt16(1), typemax(UInt16)) === 0x0001
@test invmod(UInt32(1), typemax(UInt32)) === 0x0000_0001
@test invmod(UInt64(1), typemax(UInt64)) === 0x0000_0000_0000_0001
for T in (UInt8, UInt16, UInt32, UInt64, UInt128, Int8, Int16, Int32, Int64, Int128, BigInt)
@test invmod(T(3), T(124))::T == 83
end
for T in (Int8, UInt8)
for x in typemin(T):typemax(T)
for m in typemin(T):typemax(T)
if m != 0 && try gcdx(x, m)[1] == 1 catch _ true end
y = invmod(x, m)
@test mod(widemul(y, x), m) == mod(1, m)
@test div(y, m) == 0
else
@test_throws DomainError invmod(x, m)
end
end
end
end
end
@testset "invmod(n)" begin
for T in (Int8,UInt8,Int16,UInt16,Int32,UInt32,Int64,UInt64,Int128,UInt128)
if sizeof(T) ≤ 2
# test full domain for small types
for a = typemin(T)+true:T(2):typemax(T)
b = invmod(a)
@test a * b == 1
end
else
# test random sample for large types
for _ = 1:2^12
a = rand(T) | true
b = invmod(a)
@test a * b == 1
end
end
end
end
@testset "invmod(n, T)" begin
for S in (Int8,UInt8,Int16,UInt16,Int32,UInt32,Int64,UInt64,Int128,UInt128),
T in (Int8,UInt8,Int16,UInt16,Int32,UInt32,Int64,UInt64,Int128,UInt128)
for _ = 1:2^8
a = rand(S) | true
b = invmod(a, T)
@test (a * b) % T == 1
@test (a % T) * b == 1
end
end
end
@testset "powermod" begin
@test powermod(2, 3, 5) == 3
@test powermod(2, 3, -5) == -2
@test powermod(2, 0, 5) == 1
@test powermod(2, 0, -5) == -4
@test powermod(2, -1, 5) == 3
@test powermod(2, -2, 5) == 4
@test powermod(2, -1, -5) == -2
@test powermod(2, -2, -5) == -1
@test powermod(2, typemin(Int128), 5) == 1
@test powermod(2, typemin(Int128), -5) == -4
@test powermod(2, big(3), 5) == 3
@test powermod(2, big(3), -5) == -2
@inferred powermod(2, -2, -5)
@inferred powermod(big(2), -2, UInt(5))
end
@testset "nextpow/prevpow" begin
@test nextpow(2, 3) == 4
@test nextpow(2, 4) == 4
@test nextpow(2, 7) == 8
@test_throws DomainError nextpow(0, 3)
@test_throws DomainError nextpow(3, 0)
@test prevpow(2, 3) == 2
@test prevpow(2, 4) == 4
@test prevpow(2, 5) == 4
@test prevpow(Int64(10), Int64(1234567890123456789)) === Int64(1000000000000000000)
@test prevpow(10, 101.0) === 100
@test prevpow(10.0, 101) === 100.0
@test_throws DomainError prevpow(0, 3)
@test_throws DomainError prevpow(0, 3)
end
@testset "ndigits/ndigits0z" begin
@testset "issue #8266" begin
@test ndigits(-15, base=10) == 2
@test ndigits(-15, base=-10) == 2
@test ndigits(-1, base=10) == 1
@test ndigits(-1, base=-10) == 2
@test ndigits(2, base=10) == 1
@test ndigits(2, base=-10) == 1
@test ndigits(10, base=10) == 2
@test ndigits(10, base=-10) == 3
@test ndigits(17, base=10) == 2
@test ndigits(17, base=-10) == 3
@test ndigits(unsigned(17), base=-10) == 3
@test ndigits(146, base=-3) == 5
end
@testset "ndigits with base power of 2" begin
@test ndigits(17, base = 2) == 5
@test ndigits(123, base = 4) == 4
@test ndigits(64, base = 8) == 3
@test ndigits(8436, base = 16) == 4
@test ndigits(159753, base = 32) == 4
@test ndigits(3578951, base = 64) == 4
end
let (n, b) = rand(Int, 2)
-1 <= b <= 1 && (b = 2) # invalid bases
@test ndigits(n) == ndigits(big(n)) == ndigits(n, base=10)
@test ndigits(n, base=b) == ndigits(big(n), base=b)
end
for b in -1:1
@test_throws DomainError ndigits(rand(Int), base=b)
end
@test ndigits(Int8(5)) == ndigits(5)
# issue #19367
@test ndigits(Int128(2)^64, base=256) == 9
# test unsigned bases
@test ndigits(9, base=0x2) == 4
@test ndigits(0x9, base=0x2) == 4
# ndigits is defined for Bool
@test iszero([Base.ndigits0z(false, b) for b in [-20:-2;2:20]])
@test all(n -> n == 1, Base.ndigits0z(true, b) for b in [-20:-2;2:20])
@test all(n -> n == 1, ndigits(x, base=b) for b in [-20:-2;2:20] for x in [true, false])
# issue #29148
@test ndigits(typemax(UInt64), base=-2) == ndigits(big(typemax(UInt64)), base=-2)
for T in Base.BitInteger_types
n = rand(T)
b = -rand(2:100)
@test ndigits(n, base=b) == ndigits(big(n), base=b)
end
end
primitive type BitString128 128 end
@testset "bin/oct/dec/hex/bits" begin
@test string(UInt32('3'), base = 2) == "110011"
@test string(UInt32('3'), pad = 7, base = 2) == "0110011"
@test string(3, base = 2) == "11"
@test string(3, pad = 2, base = 2) == "11"
@test string(3, pad = Int32(2), base = Int32(2)) == "11"
@test string(3, pad = typemin(Int128) + 3, base = 0x2) == "11"
@test string(3, pad = 3, base = 2) == "011"
@test string(-3, base = 2) == "-11"
@test string(-3, pad = 3, base = 2) == "-011"
@test string(9, base = 8) == "11"
@test string(-9, base = 8) == "-11"
@test string(-9, base = 8, pad = 5) == "-00011"
@test string(-9, base = 8, pad = Int32(5)) == "-00011"
@test string(121, base = 10) == "121"
@test string(121, base = 10, pad = 5) == "00121"
@test string(121, base = 10, pad = 5) == "00121"
@test string(12, base = 16) == "c"
@test string(-12, pad = 3, base = 16) == "-00c"
@test string(-12, pad = Int32(3), base = Int32(16)) == "-00c"
@test string(5, pad = 7, base = 2) == "0000101"
@test bitstring(Int16(3)) == "0000000000000011"
@test bitstring('3') == "00110011000000000000000000000000"
@test bitstring(1035) == (Int == Int32 ? "00000000000000000000010000001011" :
"0000000000000000000000000000000000000000000000000000010000001011")
@test bitstring(Int128(3)) == "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011"
@test bitstring(reinterpret(BitString128, Int128(3))) == "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011"
end
@testset "digits/base" begin
@test digits(5, base = 3) == [2, 1]
@test digits(5, pad = 3) == [5, 0, 0]
@test digits(5, pad = Int32(3)) == [5, 0, 0]
# The following have bases powers of 2, but don't enter the fast path
@test digits(-3, base = 2) == -[1, 1]
@test digits(-42, base = 4) == -[2, 2, 2]
@test_throws DomainError string(5, base = typemin(Int128) + 10)
@testset "digits/base with bases powers of 2" begin
@test digits(4, base = 2) == [0, 0, 1]
@test digits(5, base = Int32(2), pad=Int32(3)) == [1, 0, 1]
@test digits(42, base = 4) == [2, 2, 2]
@test digits(321, base = 8) == [1, 0, 5]
@test digits(0x123456789abcdef, base = 16) == 15:-1:1
@test digits(0x2b1a210a750, base = 64) == [16, 29, 10, 4, 34, 6, 43]
@test digits(0x02a01407, base = Int128(1024)) == [7, 5, 42]
end
@testset "digits/base with negative bases" begin
@testset "digits(n::$T, base = b)" for T in (Int, UInt, BigInt, Int32, UInt32)
@test digits(T(8163), base = -10) == [3, 4, 2, 2, 1]
if !(T<:Unsigned)
@test digits(T(-8163), base = -10) == [7, 7, 9, 9]
end
if T !== BigInt
b = rand(-32:-2)
for n = T[rand(T), typemax(T), typemin(T)]
# issue #29183
@test digits(n, base=b) == digits(signed(widen(n)), base=b)
end
end
end
@test [string(n, base = b)
for n = [-10^9, -10^5, -2^20, -2^10, -100, -83, -50, -34, -27, -16, -7, -3, -2, -1,
0, 1, 2, 3, 4, 7, 16, 27, 34, 50, 83, 100, 2^10, 2^20, 10^5, 10^9]
for b = [-2, -3, -7, -10, -60]] ==
["11000101101001010100101000000000", "11211100201202120012",
"144246601121", "1000000000", "2hANlK", "111000111010100000",
"122011122112", "615462", "100000", "1XlK", "1100000000000000000000",
"11000202101022", "25055043", "19169584", "59Hi", "110000000000",
"12102002", "3005", "1036", "Iu", "11101100", "121112", "1515",
"1900", "2K", "11111101", "120011", "1651", "97", "2b", "11010010",
"2121", "1616", "50", "1A", "100010", "2202", "51", "46", "1Q",
"100101", "1000", "41", "33", "1X", "110000", "1102", "35", "24",
"1i", "1001", "1202", "10", "13", "1r", "1101", "10", "14", "17",
"1v", "10", "11", "15", "18", "1w", "11", "12", "16", "19", "1x", "0",
"0", "0", "0", "0", "1", "1", "1", "1", "1", "110", "2", "2", "2",
"2", "111", "120", "3", "3", "3", "100", "121", "4", "4", "4",
"11011", "111", "160", "7", "7", "10000", "211", "152", "196", "G",
"1101111", "12000", "146", "187", "R", "1100110", "12111", "136",
"174", "Y", "1110110", "11022", "101", "150", "o", "1010111", "10002",
"236", "123", "1xN", "110100100", "10201", "202", "100", "1xe",
"10000000000", "2211011", "14012", "19184", "1h4",
"100000000000000000000", "2001112212121", "162132144", "1052636",
"1uqiG", "1101001101111100000", "21002022201", "1103425", "1900000",
"SEe", "1001100111011111101111000000000", "120220201100111010001",
"44642116066", "19000000000", "1xIpcEe"]
end
end
@testset "leading_ones, count_zeros, etc." begin
@test leading_ones(UInt32(Int64(2) ^ 32 - 2)) == 31
@test leading_ones(1) == 0
@test leading_zeros(Int32(1)) == 31
@test leading_zeros(UInt32(Int64(2) ^ 32 - 2)) == 0
@test Base.top_set_bit(3) == 2
@test Base.top_set_bit(-Int64(17)) == 64
@test Base.top_set_bit(big(15)) != Base.top_set_bit(big(16)) == Base.top_set_bit(big(17)) == 5
@test_throws DomainError Base.top_set_bit(big(-17))
struct MyInt <: Integer
x::Int
end
MyInt(x::MyInt) = x
Base.:+(a::MyInt, b::MyInt) = a.x + b.x
for n in 0:100
x = ceil(Int, log2(n + 1))
@test x == Base.top_set_bit(Int128(n)) == Base.top_set_bit(unsigned(Int128(n)))
@test x == Base.top_set_bit(Int32(n)) == Base.top_set_bit(unsigned(Int64(n)))
@test x == Base.top_set_bit(Int8(n)) == Base.top_set_bit(unsigned(Int8(n)))
@test x == Base.top_set_bit(big(n)) # BigInt fallback
@test x == Base.top_set_bit(MyInt(n)) # generic fallback
end
for n in -10:-1
@test 128 == Base.top_set_bit(Int128(n)) == Base.top_set_bit(unsigned(Int128(n)))
@test 32 == Base.top_set_bit(Int32(n)) == Base.top_set_bit(unsigned(Int32(n)))
@test 8 == Base.top_set_bit(Int8(n)) == Base.top_set_bit(unsigned(Int8(n)))
@test_throws DomainError Base.top_set_bit(big(n))
# This error message should never be exposed to the end user anyway.
err = n == -1 ? InexactError : DomainError
@test_throws err Base.top_set_bit(MyInt(n))
end
@test count_zeros(Int64(1)) == 63
end
@testset "factorial" begin
@test factorial(3) == 6
@test factorial(Int8(3)) === 6
@test_throws DomainError factorial(-3)
@test_throws DomainError factorial(Int8(-3))
end
@testset "isqrt" begin
@test isqrt(4) == 2
@test isqrt(5) == 2
@test isqrt(Int8(4)) === Int8(2)
@test isqrt(Int8(5)) === Int8(2)
end
@testset "issue #4884" begin
@test isqrt(9223372030926249000) == 3037000498
@test isqrt(typemax(Int128)) == parse(Int128,"13043817825332782212")
@test isqrt(Int128(typemax(Int64))^2-1) == 9223372036854775806
@test isqrt(0) == 0
for i = 1:1000
n = rand(UInt128)
s = isqrt(n)
@test s*s <= n
@test (s+1)*(s+1) > n
n = rand(UInt64)
s = isqrt(n)
@test s*s <= n
@test (s+1)*(s+1) > n
end
end
# issue #9786
let ptr = Ptr{Cvoid}(typemax(UInt))
for T in (Int, Cssize_t)
@test T(ptr) == -1
@test ptr == Ptr{Cvoid}(T(ptr))
@test typeof(Ptr{Float64}(T(ptr))) == Ptr{Float64}
end
end
# issue #15911
@inferred string(1)
# issue #22837
for b in [-100:-2; 2:100;]
@test Base.ndigits0z(0, b) == 0
end
@testset "constant prop in gcd" begin
ci = code_typed(() -> gcd(14, 21))[][1]
@test ci.code == Any[Core.ReturnNode(7)]
ci = code_typed(() -> 14 // 21)[][1]
@test ci.code == Any[Core.ReturnNode(2 // 3)]
end
@testset "binomial" begin
for T in (Int8, Int16, Int32, Int64)
for x in rand(-isqrt(typemax(T)):isqrt(typemax(T)), 1000)
@test binomial(x,T(1)) == x
x>=0 && @test binomial(x,x-T(1)) == x
@test binomial(x,T(2)) == div(x*(x-1), 2)
x>=0 && @test binomial(x,x-T(2)) == div(x*(x-1), 2)
end
@test @inferred(binomial(one(T),one(T))) isa T
# Arguments of different Integer types do not lead to computation of
# generalized binomial coefficient (issue #54296)
@test @inferred(binomial(Int64(5), T(2))) === Int64(10)
end
for x in ((false,false), (false,true), (true,false), (true,true))
@test binomial(x...) == (x != (false,true))
end
# binomial(x,k) for non-integer x
@test @inferred(binomial(10.0,3)) === 120.0
@test @inferred(binomial(10//1,3)) === 120//1
@test binomial(2.5,3) ≈ 5//16 === binomial(5//2,3)
@test binomial(2.5,0) == 1.0
@test binomial(35.0, 30) ≈ binomial(35, 30) # naive method overflows
@test binomial(2.5,-1) == 0.0
end
# concrete-foldability
@test Base.infer_effects(gcd, (Int,Int)) |> Core.Compiler.is_foldable
@test Base.infer_effects(gcdx, (Int,Int)) |> Core.Compiler.is_foldable
@test Base.infer_effects(invmod, (Int,Int)) |> Core.Compiler.is_foldable
@test Base.infer_effects(binomial, (Int,Int)) |> Core.Compiler.is_foldable
@testset "literal power" begin
@testset for T in Base.uniontypes(Base.HWReal)
ns = (T(0), T(1), T(5))
if T <: AbstractFloat
ns = (ns..., T(3.14), T(-2.71))
end
for n in ns
@test n ^ 0 === T(1)
@test n ^ 1 === n
@test n ^ 2 === n * n
@test n ^ 3 === n * n * n
@test n ^ -1 ≈ inv(n)
@test n ^ -2 ≈ inv(n) * inv(n)
end
end
end